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Abstract—Harmonic reducers play a crucial role in
industrial robots. Their high load capacity and low friction
performance make them highly favored. However, obtaining
a large amount of high-quality data on all factory faults is
not easy in actual industrial applications. At the same time,
data sharing between factories is limited due to privacy
concerns. To address this challenge, this article proposes
an innovative solution by integrating convolutional neural
networks (CNNs) into a swarm learning (SL) framework. In
this framework, multiple factories act as edge computing
nodes, sharing data features through the fusion of network
parameters without directly sharing the data itself. First, we
use CNNs to train each node and select a decision-maker
before training to merge the model parameters. Secondly,
the decision-maker chosen by SL collects the models from
other nodes. Finally, the decision-maker disseminates the
integrated model to the other nodes. We validated the
proposed method using a harmonic reducer dataset and
confirmed its reliability. The experimental results show
that the proposed framework can improve computational
efficiency without relying on a central server, and the
shared model can also improve the fault diagnosis
accuracy of each edge node.

Index Terms—Data privacy protection, fault diagnosis,
harmonic reducer, swarm learning (SL) algorithm.

I. INTRODUCTION

A S Intelligent manufacturing technology deepens its ap-
plication in the automotive and aerospace industries, the
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reliability of industrial robot systems becomes exceptionally
crucial. Minor mechanical failures or collisions can cause robot
systems to halt temporarily, leading to significant economic
losses for the entire production system. Against this back-
drop, the timely diagnosis and prediction of robot malfunctions
emerge as urgent issues that modern industry needs to address,
especially against the backdrop of future manufacturing and
Industry 4.0. As an indispensable component of industrial robot
systems, harmonic reducers are widely used in numerous fields,
including aerospace, due to their compact size, outstanding load-
bearing capacity, and high precision [1], [2], [3], [4]. However,
the complex internal structure of harmonic reducers, combined
with long-term operation under high load and torque conditions,
leads to a higher rate of failure. Over long-term operation,
harmonic reducers may experience various failures, such as
wave generator stuttering, flexible wheel pitting, and output end
bearing misalignment. Moreover, the rotation of industrial robot
joints within specific angular ranges, frequent acceleration and
deceleration, and incomplete rotation operations are common
factors that increase the risk of gear failures. These factors
collectively impact the reliability and repeat precision of robots.
Given this, conducting research on fault diagnosis methods for
harmonic reducers is of vital importance for enhancing the
overall reliability of industrial robots.

In recent years, with the growing demand for intelligent
manufacturing in the industry, research on fault diagnosis tech-
nology for a key component of industrial robots—the harmonic
reducer—has also been significantly intensified. These studies
aim to ensure the efficient and reliable operation of robot systems
through precise monitoring and diagnosis of faults. Among the
many methods, acceleration sensors are widely used to collect
vibration signals, thereby implementing condition monitoring
and fault diagnosis [5]. Currently, fault diagnosis technologies
for harmonic reducers are mainly divided into two categories:
data-driven and model-driven. For instance, Zhou et al. [6]
proposed a fault diagnosis method for industrial robot harmonic
reducers based on deep learning of time-domain continuous
vibration signals. This method combines a one-dimensional
(1-D) convolutional neural network with a matrix kernel adap-
tive model, resulting in higher prediction accuracy compared
to traditional 2-D CNNs, support vector machine (SVM), and
others. Mo et al. [7] proposed a dynamic bandit tree algo-
rithm to improve adaptive filters and frequency band searching,
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optimizing the boundaries of Meyer wavelet filters to allevi-
ate parameter tuning burden and enhance the effectiveness of
machine fault diagnosis. Zhi et al. [8] introduced a joint fault
detection method combining wavelet region correlated thresh-
old denoizing algorithm and convolutional neural network-long
short term memory, which also outperforms traditional methods
in detection results. Yang et al. [9] proposed an intelligent fault
detection method for complete harmonic drives under various
working conditions, introducing a new multiscale convolutional
neural network architecture. It allows for automatic feature
extraction and classification without relying on manual signal
processing and empirical knowledge. Li et al. [10] proposed a
novel fault diagnosis model based on capsule neural networks
and deep reinforcement learning, aiming to address the issue
of domain mismatch in industrial applications under different
operating conditions, thereby achieving better diagnostic per-
formance and adaptability. Jia et al. [11] proposed a harmonic
reducer fault diagnosis scheme that utilizes Hidden Markov
models to describe dynamic laws, extracting feature state tran-
sitions and observation probabilities to establish the mapping
relationship between excitation and monitoring signals. Lu et al.
[12] proposes a novel dynamic modeling approach, termed as
graph-modeled wavelet packet coefficients, to address early
warning detection and fault identification in rolling element
bearings, validated through experiments. He et al. [13] intro-
duced a field fault diagnosis method based on a multiscale mixed
convolutional neural network model (MSMNN). This MSMNN
model is specifically designed for multijoint industrial robot
harmonic reducers with multiscale characteristics capable of ex-
tracting comprehensive and complementary fault features from
complex onsite multichannel signals. Lee et al. [14] analyzed
the failure modes and stress effects on the main components
of harmonic reducers, extrapolating accelerated test data under
three stress levels and using statistical methods to estimate
their lifetime under rated conditions. Qiao et al. [15] proposed
a nonlinear spectral feature fusion method for fault diagnosis
of industrial robot rotational vector (RV) reducers. Nonlinear
output frequency response functions are used to extract nonlinear
spectra, accurately describing the nonlinear mechanisms of fault
phenomena.

In practical application scenarios, harmonic reducers may
encounter numerous faults that have the potential to halt the
operation of robotic arms temporarily. Given cost considera-
tions, the duration for maintaining these faulty states is often
very limited, which severely restricts the volume of high-quality
data collected. This situation poses a significant challenge to
the widely adopted fault diagnosis techniques based on deep
learning today. These techniques tend to rely on large datasets
and may exhibit weaker recognition capabilities when faced with
fault types characterized by smaller data volumes.

To overcome the challenge of data scarcity and improve the
effectiveness of deep learning-based techniques, data augmen-
tation has become a necessary approach. Currently, the main
strategies can be categorized into two broad types, one of which
involves data generation and expansion through generative ad-
versarial networks (GANs) [16], [17]. Yang et al. [18] proposed
a fusion diagnostic model CGAN-2-D-CNN that combines

conditional generative adversarial networks (CGANs) with 2-D
convolutional neural networks (2-D-CNNs) for small-sample
bearing fault diagnosis. Lyu et al. [19] developed a general
anomaly detection method for catenary support components
based on GANs, combining deep convolutional neural networks
(DCNNs) with GANs to estimate fault occurrences and issue
alerts to stop accidents. Pu et al. [20] introduced a semisuper-
vised learning framework, OCGAD, capable of handling mul-
tiple fault diagnosis tasks, including fault detection and novelty
detection using only normal data, as well as fault classification
for unlabeled data. Zhou et al. [21] proposed a new GAN model
aimed at generating more discriminative fault samples through a
global optimization scheme, addressing the issue of inaccurate
fault feature extraction due to imbalanced data in the field of
fault diagnosis.

The second approach to address data insufficiency involves
aggregating data from multiple locations. However, given that
data has become a significant virtual asset for enterprises, few
are willing to share it with external parties. In this context,
the concept of federated learning (FL) emerged as a solution
to this dilemma. Lu et al. [22] proposed a class-imbalanced
privacy-preserving federated learning, in response to industrial
big data privacy protection and wind turbine data. Addition-
ally, the data volume owned by different servers varies, and
a noise gradient mechanism is introduced to prevent client
gradient tracking. Liu et al. [23] proposed an asynchronous
FL algorithm aimed at addressing the challenge of data is-
lands in photovoltaic power stations. Compared to individual
photovoltaic stations, data aggregated from multiple stations
provides a richer set of fault samples. Meanwhile, the asyn-
chronous nature of the algorithm effectively resolves the issue
of computing power disparities among different photovoltaic
station servers. Despite these advantages, FL faces the issue of
high communication costs. Fig. 1(a) illustrates the FL network
structure.

From the research mentioned above, we can identify the
drawbacks of FL. Warnat-Herresthal et al. [24] introduced an
innovative learning approach, swarm learning (SL), which sig-
nificantly reduces the cost of communication between nodes and
operates without a central server, ensuring equal rights among
nodes, with each having the opportunity to become a temporary
central server. Building on this, Sun et al. [25] proposed an
SL framework that combines adversarial domain networks with
CNNs to address the issue of data insufficiency. Furthermore, in
the same study, Sun et al. [26] proposed modifying the models of
each edge computing node so that different nodes have different
models, further protecting data privacy while also endowing
the network with a certain level of interpretability. Fig. 1(b)
illustrates the SL network structure.

To achieve centralized aggregation of data while ensuring
that data privacy is adequately protected, this article adopts
an SL framework for the effective integration of information.
Moreover, this research focuses on the harmonic reducers of
industrial robot joints as the core subject of article. For each node
in the network, we have adopted a unique approach to sample and
study both identical and different models. The core innovations
and main contributions of this article are summarized as follows.
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Fig. 1. Structural concept diagrams of two methods. (a) FL: with a
central server. (b) SL: without a central server.

1) By adopting SL as the framework for information inte-
gration, this article effectively addresses the issues of data
privacy protection and the “data island” phenomenon,
promoting the rational utilization of data resources.

2) This article investigates models under two scenarios: one
where each node in the network uses the same model,
and another where each node applies different models.
The aim is to explore the impact of model diversity on
the effectiveness of model fusion.

3) Through experimental validation on harmonic reducers,
the results demonstrate that the proposed method can
effectively process signals from different devices, further
proving the universality of the algorithm and showcasing
its potential applicability to other devices or components.

The rest of this article is organized as follows. Section II pro-
vides a brief overview of SL and its related research. Section III
elaborates on the method proposed in this article, including the
local training model architecture for each node and the process
of aggregating model parameters through the SL framework.
Section IV validates the effectiveness of the proposed method
with vibration signal data from harmonic reducers collected in
the laboratory. Finally, Section V concludes this article.

Fig. 2. Diagram of the AlexNet architecture, which consists of five
convolutional layers and three fully connected layers.

II. PRELIMINARIES

A. AlexNet

AlexNet [27] is a DCNN that won the championship in the
2012 ImageNet large scale visual recognition challenge, signifi-
cantly improving the accuracy of image classification tasks. The
structure of AlexNet includes five convolutional layers, three
fully connected layers, and the rectified linear unit (ReLU) func-
tion for nonlinear activation. It also incorporates several innova-
tive techniques to enhance performance and reduce overfitting,
such as max pooling, local response normalization, dropout,
and a wide range of data augmentation techniques. The network
structure of AlexNet is shown in Fig. 2.

In this article, the data processed is from industrial robot har-
monic reducers, which are 1-D data. Therefore, a 1-D AlexNet is
used to extract features from the vibration data. The computation
of the 1-D convolutional layer can be represented as follows:

ali = f

(∑
m

wl
m · xl−1

i+m + bl

)
(1)

where ali is the activation value at position i in layer l, f is the
activation function, and wl

m represents the weight at position m
in layer l.xl−1

i+m is the input value at position i+m in layer l-1, and
bl is the bias for layer l. After the convolution operation, a large
number of features are obtained, necessitating the introduction
of a 1-D pooling layer to reduce the feature dimensionality and
simultaneously enhance the model’s generalization capability.
Furthermore, by reducing the number of parameters and the
model’s sensitivity to specific data, the pooling layer helps
improve the model’s generalization ability, thereby reducing
the risk of overfitting. The formula for max pooling can be
represented as follows:

pli = max
m∈M

xli+m (2)

where pli is the pooling output at position i in layer l. M is the
size of the pooling window and xli+m is the input value within
the pooling window at layer l.

The fully connected layer connects all neurons between the
input and output data, enabling feature extraction, mapping to
the output space, introducing nonlinearity, and learning param-
eters. This allows the network to learn complex data patterns to
perform classification tasks. The computation formula for the
fully connected layer is as follows:

al = f
(
Wl · al−1 + bl

)
(3)
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where al is the activation value vector for layer l, f is the
activation function, Wl is the weight matrix for layer l, and
bl is the bias vector for layer l.

B. Swarm Learning (SL)

SL is an advanced distributed artificial intelligence technol-
ogy designed to share learning outcomes between nodes rather
than raw data, to protect data privacy and achieve more effective
decision-making and prediction. This technology mimics the
phenomenon of swarm intelligence observed in nature, such as
flocks of birds and colonies of ants, by enabling individual nodes
to learn locally and exchange trained model parameters without
centralized data storage. This not only reduces dependence on
data transmission, enhancing processing efficiency, but also
significantly improves data security and privacy protection. SL
overcomes the privacy and security limitations of traditional
centralized learning models by utilizing distributed learning and
aggregated updates, thereby increasing the system’s scalability,
flexibility, and robustness. Thus, SL is considered a powerful
tool capable of ensuring data privacy while enabling effective
learning and decision-making across domains. Fig. 1(b) shows
a schematic diagram of the SL network structure.

In SL, before each epoch of training, a decision-maker is
randomly selected. After each epoch of training, this decision-
maker needs to collect the models from other nodes participating
in the training, and integrate their own model parameters with
those of the others. After the model integration, the integrated
model is distributed to each edge node, followed by the next
round of training. This process is repeated until the training
concludes. The formula for model updating is as follows:

mj+1 =
1
n

n∑
i=1

mj,i (4)

where mj+1 represents the integrated model parameters, which
m consists of two parts (W and b). i denotes the number of nodes,
and mj,i represents the model parameters obtained by the node
after the jth round of training. The model integration process is
shown in Fig. 3.

C. Laplace Wavelet

Wavelet analysis is a powerful tool for localized processing
in the time-frequency domain, contrasting with the Fourier
transform. The Fourier transform focuses on the frequency
components of a signal, whereas the wavelet transform cap-
tures changes in both time and frequency. By scaling (affecting
frequency) and shifting (affecting time) the original signal, the
wavelet transform achieves multi-scale analysis of the signal.
Through its unique properties of decay and oscillation, the
wavelet transform allows for detailed analysis and reconstruc-
tion of signals at various scales. Wavelets can be represented as
follows:

WT (a, b) =
1√|a|

∫ ∞

−∞
x (t)ψ∗

(
t− b

a

)
dt. (5)

From the formula, it is evident that wavelets differ from the
Fourier transform. The Fourier transform has only one variable,

Fig. 3. Model integration process.

frequency, while wavelets have two variables: the scale factor a
and the translation factor b. ψ∗(�) is the complex conjugate of
the mother function ψ(�). Li et al. [28] conducted comparative
experiments by using wavelets as the first layer in CNNs and
found that the Laplace wavelet, with its spiral decay character-
istic, can better extract the impact part. It can be represented as
follows:

ψ (ω, ζ, τ, t) = ψγ (t)

=

{
Ae

− ζ√
1−ζ2

ω(t−τ)
e−jω(t−τ), t ∈ [τ, τ +W ]

0, others

(6)

where γ = 〈ω, ζ, τ〉 represents the parameters of the Laplace
wavelet, ω represents the frequency, determining the oscillation
frequency of the Laplace wavelet, ζ is the damping ratio which
makes the Laplace wavelet decay rapidly, τ is the time parameter,
A is used to normalize the wavelet function, and W indicates
the width of the wavelet’s support interval.

D. Chebyshev I Filter

The amplitude response formula of the Chebyshev I filter
is used to describe the filter’s gain or attenuation at different
frequencies. Chebyshev filters have a steeper roll-OFF charac-
teristic compared to Butterworth filters, but at the cost of ripple
in the passband. For the Chebyshev I filter, the expression for its
amplitude response is as follows:

|Hn (jω)| = 1√
1+ε2T 2

n

(
ω
ωc

) . (7)

|Hn(jω)| is the amplitude response of the filter, ω is the angular
frequency of the input signal, ωc is the cutoff frequency of the
filter, and ε is the ripple factor, which determines the maximum
ripple amplitude within the passband.Tn represents the nth order
Chebyshev polynomial, where n is the order of the filter that
determines the steepness of the filter’s roll-OFF. In a Chebyshev
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Fig. 4. Chebyshev I filter amplitude-frequency response curve.

I filter, the ripple within the passband is determined by the
ε value, with the ripple amplitude increasing as ε increases.
The higher the order n, the faster the filter attenuates near the
cutoff frequency, but the more pronounced the ripple within the
passband. This type of filter achieves rapid attenuation over a
short frequency range. The filter’s amplitude-frequency curve is
shown in Fig. 4.

III. PROCEDURE OF THE PROPOSED METHOD

This section describes the proposed method for diagnosing
faults in industrial robot joint harmonic reducers in scenarios
with limited samples. The proposed method can automatically
identify the state of the reducer from the signal. The main focus
of this article is the three-node problem, and the flowchart of the
proposed method is shown in Fig. 5. The training algorithm is
presented in Algorithm 1.

Algorithm 1: Fault Diagnosis of Industrial Robot Harmonic
Reducers Based on SL.

I. Data preprocessing
II. Model preparation w, b
III. Building an SL framework
IV. For any node, i = 1,2,3

Choose i = kth ∈ (1, 2, 3) as the decision-maker
V. Model training

1) For decision-makermj,kth
= (wth|bth), for the other

two nodes
mj,2 = (wj,1, wj,2|bj,1, bj,2)

2) Model updates
mj =

1
3 (mj,1 +mj,2 +mj,kth

)
3) Model distribution

mj+1 = mj

VI. Model validation

IV. CASE STUDY

To investigate the collaborative fault diagnosis method for
industrial robot harmonic reducers further based on SL, this

Fig. 5. Workflow of fault diagnosis for harmonic reducers is based
on SL network. It is divided into two parts: local training and model
integration. First, the model is trained locally, then the model is passed to
the decision maker, who integrates the model and distributes it to clients.

article collected data by conducting experiments on a dedicated
harmonic reducer fault testing platform established in the labo-
ratory.

A. Dataset Preparation

The experiment involves three nodes, all of which are taken
from the harmonic reducer fault test bench in the laboratory.
Details of the harmonic reducer fault test bench are shown in
Fig. 6. There are a total of four health states for the harmonic re-
ducer: healthy, wave generator stuttering, flexible wheel pitting,
and output end bearing misalignment. Fig. 7 illustrates some of
the prefabricated faults. Together with the fault-free harmonic
reducers, there are a total of four types of labels.

The time-domain and frequency-domain plots of the harmonic
reducer data are shown in Fig. 8. The health condition of the
harmonic reducer is divided into four categories. Considering
the limited sample problem faced in this article, the dataset for
each node contains 404 sets of data, each with a length of 2400.
In each node, 200 sets of data are used for model training, while
the remaining 204 sets are used for model testing. For each type
of fault, we use 50 sets of data to train the diagnostic model
and 51 sets to test the diagnostic efficacy of the model. The
conditions of each dataset are given in Table I.
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Fig. 6. Harmonic reducer fault test system diagram. The fault test
bench includes NI acquisition equipment, harmonic reducer, motor, and
other components.

Fig. 7. Harmonic reducer fault images. (a) Normal. (b) Wave generator
stuttering. (c) Flexible wheel pitting. (d) Output end bearing misalign-
ment.

TABLE I
OPERATING CONDITIONS OF A HARMONIC REDUCER DATASET

WITH THREE NODES

B. Data Preprocessing

Due to the high gear ratio of the harmonic reducer, the infor-
mation contained in the 2400 data points is limited. Additionally,
the data from the harmonic reducer is influenced by factors, such
as flexible thin-wall bearings and other noise, resulting in insuf-
ficiently distinct differences in the collected data. Therefore, it is
necessary to preprocess the data. Envelope spectrum analysis is
selected as the preprocessing method for the data. The formula

Fig. 8. Waveform diagram of the harmonic reducer is shown below: the
left side is the time-domain graph, and the right side is the frequency-
domain graph.

TABLE II
STRUCTURAL PARAMETERS OF ALEXNET

is as follows:

x̂ (t) =
1
π

∫ +∞

−∞

x (t− τ)

τ
dτ = x (t) · 1

π
(8)

x̃ (t) = x (t) + jx̂ (t) = A (t) ejϕ(t). (9)

A(t) is the Hilbert envelope of x(t). Performing Fourier trans-
form on this A(t) yields the envelope spectrum. The collected
signal is divided into sub-signals of size 404 × 2400. After ob-
taining the envelope, the data becomes 404 × 1200, where each
label’s data consists of 101× 1200. Then, the data is normalized.
Table II shows the details of the structural parameters of AlexNet
network.
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TABLE III
HYPERPARAMETER VALUES

Fig. 9. Diagnostic experimental results of the harmonic reducer from
5 repeated trials within the SL framework.

C. AlexNet Architecture Parameters

D. Hyperparameter Settings

The implementation of harmonic reducer fault diagnosis
based on the SL framework uses the Python-based PyTorch
framework. The experimental hyperparameter settings are given
in Table III.

E. Experimental Results and Comparisons

By placing the above dataset into the SL framework and
conducting repeated experiments, the results obtained are shown
in the Fig. 9.

Compared to the bearing data, the data from the harmonic re-
ducer exhibit higher complexity. Nevertheless, the experimental
results demonstrate high accuracy, confirming the feasibility of
the experimental approach. Additionally, the short runtime of
the experiments allows for swift identification and localization
of any faults in the robotic arm joints once they occur.

To demonstrate the advantages of the proposed method in this
article, we will conduct a series of comparative experiments for
further analysis. These experiments will involve examining the
dataset sizes and comparing the different model SL (DSL) with
the local learning strategy.

1) Experiment I: The Impact of Dataset Size on Experimen-
tal Results: This experiment investigated the impact of training
set size on the performance of fault diagnosis for harmonic

Fig. 10. Impact of the training dataset size on the diagnostic results
of the harmonic reducer. As the size of the training set increases, it
incorporates more fault information, leading to more accurate diagnostic
outcomes.

reducer within the SL framework. Envelope spectrum was still
adopted as the input to the network for this article. Considering a
batch size set to 16, dataset sizes were varied to 16, 40, 80, 100,
120, 160, and 200 to observe the specific influence of different
data scales on diagnostic accuracy. The experimental results are
illustrated in Fig. 10.

The experimental results clearly show that as the size of the
training set increases, the overall diagnostic accuracy signif-
icantly improves. Specifically, when there are only four sets
of data for each fault type at each node, the accuracy at all
nodes exceeds 75%. As the data volume further increases, the
accuracy improvement is most pronounced for the first node,
while the second and third nodes show relatively slower im-
provements. This phenomenon suggests that the proposed SL
framework exhibits strong diagnostic capabilities even with
small training set sizes. However, under conditions of extremely
limited data, although the framework maintains high accuracy,
its performance improvement becomes relatively constrained.
This further validates the effectiveness and adaptability of the
method in data-scarce environments.

2) Experiment II: Comparison With DSL [26]: In this exper-
iment, we compare the proposed SL method with DSL [26].
The DSL method replaces the first layer of the AlexNet model
with Laplace wavelet and Chebyshev Type I filter, as shown
in Fig. 11. During the experiment, except for the replacement
of the first layer, all other experimental parameters and network
structures remain unchanged. The experimental results are given
in Table IV.

From Table IV, it can be observed that the SL-based method
proposed in this article achieves higher diagnostic accuracy
compared to the DSL-based method. This result indicates that
the data complexity of the harmonic reducer is high, and the
application of the Laplace transform and filters has certain limi-
tations in effectively capturing key fault features of the harmonic
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Fig. 11. DSL network architecture diagram. The local model is different
for each node.

TABLE IV
REPEATING EXPERIMENTS FOR SL AND DSL

TABLE V
COMPARISON BETWEEN SL AND LOCAL LEARNING

reducer. This inadequacy in feature extraction affects effective
communication between different models, thereby constraining
the diagnostic accuracy of the DSL-based approach. In contrast,
the SL method better addresses the data complexity, demonstrat-
ing stronger feature extraction capability and higher diagnostic
accuracy, further validating the advantages of this method in the
fault diagnosis of harmonic reducers.

3) Experiment III: Comparison With Local Learning: The ex-
periment compares SL with local learning, which is divided
into two parts. The first part adopts the proposed SL method,
while the second part uses local training, where there is no
model interaction among the three nodes. All training and testing
processes are completed locally on each node. The experimental
results are given in Table V.

Fig. 12. Diagnostic results of three nodes in SL under load.

Table V gives experimental results comparing SL with local
learning methods. Model 1, model 2, and model 3 represent the
models obtained through local training on nodes 1, 2, and 3,
respectively. Since both the training and testing data in local
learning originate locally, it typically results in higher accuracy
models. However, the experimental results demonstrate that
the outcomes obtained using the SL methods is significantly
superior to those based on local learning across all three nodes.
This indicates that SL can significantly improve model testing
accuracy by enhancing the quantity of data features in situations
with limited and nonshared data.

In contrast, the local learning approach not only fails to
achieve higher accuracy locally but also exhibits poorer model
transferability to other nodes. It is noteworthy that the data
used by these three nodes all originate from the same harmonic
reducer fault testbed. If the data were sourced from different
devices, the transfer accuracy of local models might further
decrease. These findings further underscore the effectiveness
of SL in improving fault diagnosis accuracy, especially when
facing challenges associated with data sharing limitations.

4) Experiment IV: Load Data Experiment: To simulate the
working conditions of a real robotic arm, load testing and
data collection were conducted on the harmonic reducer fault
test bench. During the loading process, it was observed that
when the load reached 30%, the test bench experienced sudden
stalling, indicating that it could not handle loads exceeding 30%.
Therefore, four different health states of the harmonic reducer
were selected, starting from no load and gradually increasing to
10% and 20% loads to simulate the actual working conditions
of industrial robotic arms. To ensure data reliability, each exper-
iment was repeated five times. The detailed experimental results
are shown in Fig. 12.

From the box plot, it can be observed that after adding the
load, the diagnostic accuracy of each node remains above 90%.
However, when the load increases from 10% to 20%, there is a
slight decline in accuracy for nodes 1 and 2, while node 3 shows
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Fig. 13. Impact of noise on experimental results.

an improvement. This indicates that nodes 1 and 2 are more
significantly affected by the load, whereas node 3, due to the
averaging nature of the model, exhibits an increase in accuracy.
Overall, the method proposed in this manuscript demonstrates
good diagnostic performance under both loaded and unloaded
conditions.

5) Experiment V: Add Noise Experiment: In real-world in-
dustrial robotic arm operations, various environmental noises
are inevitable. To simulate these working conditions, Gaussian
noise was artificially added to the collected data. To reflect
environmental variations, we designed three sets of experiments
by introducing Gaussian noise with standard deviations of 0.01,
0.05, and 0.1 into the data. The experimental results after adding
noise are shown in Fig. 13.

Fig. 13 shows that as the noise level increases, diagnostic
accuracy experiences a slight decline. When the standard devi-
ation is 0.01, the accuracy of each node remains above 90%.
However, as the noise level rises, the accuracy of the first two
nodes decreases to above 80%, while the accuracy of the third
node remains above 90%. This indicates that the fault diagnosis
of the harmonic reducer based on the SL framework has a certain
degree of noise resistance. However, if the noise is too high, the
robustness of the diagnosis will be compromised. Therefore, in
cases of excessive noise, it is necessary to perform some noise
reduction data processing.

6) Experiment VI: Comparison With FL: We compared the
proposed SL-based method with FL. To ensure fairness, we
kept the training hyperparameters consistent and conducted five
repeated experiments for FL as well. The experimental results
are given in Table VI.

From the table, FL has lower accuracy at nodes 1 and 2
compared to SL, indicating that the features were not well
preserved during the gradient integration process. Additionally,
we will discuss the computational costs based on the model
parameters and training time.

From Table VII, we can observe that the number of local
model parameters in SL is the same as that in FL. However,

TABLE VI
REPEATING EXPERIMENTS FOR FL

TABLE VII
COMPARISON OF COMPUTATIONAL COST

our case involves three nodes, so an additional central server
needs to be set up when using FL. In each training epoch, SL
randomly selects a decision node, resulting in four model data
transmissions. In the case of FL, the central server must collect
models from the three nodes, integrate them, and then distribute
the combined model, which requires six model data transmis-
sions. Clearly, SL reduces the number of data transmissions. In
terms of training time, the differences among the methods are not
significant due to the relatively low complexity of the problems
addressed in this article.

V. CONCLUSION

This article proposes a collaborative fault diagnosis algorithm
for industrial robot joint harmonic reducers based on the SL
framework. The uniqueness of this diagnostic framework lies in
its protection of data privacy, short training time, and effective
handling of limited data challenges. The main contributions of
this article can be summarized as follows.

1) Achieved data privacy protection by sharing the charac-
teristics of data without sharing the actual data.

2) Investigated the properties of SL-based fault diagnosis for
harmonic reducers.

3) Achieved high-precision diagnosis on complex data sets
involving the relatively novel harmonic reducers.

Through a series of comparative experiments, this article val-
idates the effectiveness and feasibility of the proposed method.
Therefore, this research not only provides a forward-looking
solution for fault diagnosis of industrial robot joint harmonic
reducers but also its generality allows it to be applied to the
fault diagnosis of other devices or components, demonstrating
its broad application potential.
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