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a b s t r a c t

This paper investigates the utilization of large language models (LLMs) for the comprehensive control of
humanoid robot locomotion. Traditional reinforcement learning (RL) approaches for robot locomotion
are resource-intensive and rely heavily on manually designed reward functions. To address these
challenges, we propose a method that employs LLMs as the primary designer to handle key aspects
of locomotion control, such as trajectory planning, inverse kinematics solving, and reward function
design. By using user-provided prompts, LLMs generate and optimize code, reducing the need for
manual intervention. Our approach was validated through simulations in Unity, demonstrating that
LLMs can achieve human-level performance in humanoid robot control. The results indicate that LLMs
can simplify and enhance the development of advanced locomotion control systems for humanoid
robots.
© 2024 The Author(s). Published by Elsevier B.V. on behalf of ShandongUniversity. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Humanoid robot technology stands at the forefront of artifi-
ial intelligence and robotics, garnering significant attention and
esearch interest due to its advanced capabilities and diverse
pplications. These sophisticated robots, meticulously designed to
imic human form and function, hold immense potential across
wide range of scenarios. In home assistance [1], humanoid

obots can perform everyday tasks, providing support for the
lderly and disabled, thereby enhancing quality of life. Industrial
utomation [2] can streamline manufacturing processes, increase
fficiency, and reduce the risk of human error. The logistics sector
enefits from their ability to handle complex sorting and delivery
asks with precision and speed [3]. Additionally, in hazardous
nvironment exploration, humanoid robots can operate in con-
itions that are unsafe for humans, such as disaster sites or
pace missions, ensuring safety while performing critical opera-
ions. The versatility and adaptability of humanoid robots make
hem a pivotal focus in the ongoing evolution of AI and robotic
echnologies.

In recent years, significant developments have been made in
he control methods for humanoid robots. Model-based control
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approaches, such as zero moment point (ZMP) [4], model predic-
tive control (MPC) [5], and whole body control (WBC) [6], have
been widely applied in locomotion control, often requiring anal-
ysis based on dynamic models like the table-cart model [7], in-
verted pendulum model [8], and multi-link models [9]. However,
these methods entail complex computations and may introduce
model errors. With the rapid advancement of machine learning
and deep learning, learning-based methods, including RL [10,11]
and imitation learning [12,13], have gradually been integrated
into various robot RL tasks. RL, in particular, has found extensive
application in the control of legged robots. It eliminates the need
for explicit dynamic models and offers an effective end-to-end
approach, demonstrating superior generalization and robustness.
Nevertheless, RL heavily relies on reward design, which remains
a challenging task, and its stability and reliability in complex
environments are ongoing challenges.

Currently, large language models (LLMs) have been proven
to play a significant role in various control tasks for robots.
LLMs possess robust semantic understanding, multi-task process-
ing, and code-writing capabilities, which can provide high-level
task planning for robotic tasks and feedback for policy learning
techniques [14]. Michael et al. [15] combined LLMs with the
availability functions of robotic skills, enabling robots to execute
highly abstract natural language instructions. Vemprala et al. [16]
provided design principles for using LLMs in robotics and demon-
strated how LLMs can help quickly extend robotic functions to
different robotic task environments, allowing intuitive control of

robotic arms, drones, home assistant robots, and more platforms
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hrough language. Jacky et al. [17] used hierarchical code gener-
tion, enabling LLMs to recursively define unknown functions, a
ethod that can express various robotic control strategies such
s feedback controllers and vision-based grasping and placing.
However, translating natural language directly into action

equences for complex tasks remains challenging due to the
ardware-dependent nature of low-level robot operations [18].
any researchers have introduced intermediate interfaces to fa-
ilitate LLMs’ understanding of low-level commands. For instance,
ang et al. [19] used the robot’s foot contact patterns as an
nterface, allowing humans to issue commands through natural
anguage for corresponding control. Moreover, utilizing reward
unctions as interfaces for LLMs to generate action sequences
s a commonly adopted method due to the semantic richness
nd flexibility of reward functions [20–22]. Recent studies have
hown that designing well-crafted prompts, such as texts, exam-
les, and APIs, can significantly improve LLMs’ success rates in
enerating code for low-level operations [23].
Most current efforts apply LLMs to specific aspects of robot

ontrol, capitalizing on their capabilities in tasks such as natural
anguage processing [24], command interpretation, and high-
evel decision-making [25]. However, when it comes to complex,
igh-dimensional systems like humanoid robots, achieving effec-
ive locomotion control presents a multifaceted challenge. This
rocess involves several intricate and interdependent stages, in-
luding precise trajectory planning [26], dynamic action sequence
eneration [27], and the creation of sophisticated reward func-
ions [28]. Each of these tasks demands a deep understanding of
obotics, advanced programming skills, and the ability to handle
omplex computational processes. Trajectory planning requires
he robot to determine optimal paths for movement, considering
actors such as balance [29], coordination [30], and efficiency [31].
his involves sophisticated algorithms that can adapt to chang-
ng environments and ensure smooth, continuous motion. Action
equence generation translates these trajectories into executable
ommands that control the robot’s joints and actuators. This step
equires precise timing and synchronization to maintain stability
nd achieve desired movements. Finally, the design of reward
unctions [20] is crucial for RL, guiding the robot to learn from its
ctions and improve its performance over time. These functions
ust be carefully crafted to balance immediate performance with

ong-term learning objectives.
This work aims to demonstrate how LLMs can significantly al-

eviate the burden on engineers by autonomously managing these
ritical and challenging tasks. By leveraging the advanced capa-
ilities of LLMs, such as their robust semantic understanding [32],
ulti-task processing [33], and code generation abilities [23], we
an streamline the development process for humanoid robots.
nstead of manually designing and coding each aspect of loco-
otion control, engineers can use LLMs to generate and refine

he necessary code. This not only reduces the need for extensive
anual intervention but also accelerates the development cycle
nd enhances the overall efficiency of creating advanced robotic
ystems. Moreover, the integration of LLMs in locomotion control
nables continuous improvement and adaptation. As the LLMs
eceive feedback and learn from the robot’s performance, they
an optimize the generated code, improving the robot’s abil-
ty to navigate complex environments and perform tasks with
reater precision and reliability. This iterative process of refine-
ent and feedback ensures that the robot’s control systems are
onstantly evolving, leading to more robust and effective lo-
omotion capabilities. Therefore, applying LLMs to handle the
omprehensive control tasks of humanoid robots represents a
ignificant advancement in the field of robotics. This approach
ot only alleviates the workload on engineers but also enhances
he development and deployment of sophisticated robotic sys-
ems. By harnessing the power of LLMs, we can achieve more
2

efficient, adaptable, and scalable solutions in humanoid robot
technology, ultimately paving the way for broader applications
and innovations in this exciting field.

To address the issues above, we leverage the advanced ca-
pabilities of the latest LLMs (GPT-4o), which excel in semantic
understanding, code writing, and zero-shot generation. By pro-
viding well-formulated prompts to the LLMs, we use the model
as the primary designer to complete a comprehensive locomotion
control task for a humanoid robot, as outlined in Fig. 1. LLMs as-
sume three roles crucial to the locomotion control task: trajectory
planner, inverse kinematics solver, and reward designer, each of
which is pivotal and challenging. Users can evaluate the code
generated by LLMs and provide appropriate feedback and refined
prompts, enabling LLMs to output correct executable code.

The main contributions of this work can be summarized as:

• We proposed a method for utilizing LLMs to replace engi-
neers in completing all critical stages of a locomotion control
task for a humanoid robot.

• We designed various prompts and input them into the LLMs,
generating code capable of successfully executing all critical
stages of the task.

• We validated our method through simulations, demonstrat-
ing that LLMs can achieve human-level performance in this
control task.

It should be noted that all processes were achieved by care-
fully crafting and setting reasonable prompts for the LLMs. These
prompts were designed to guide the LLMs through various stages
of the control tasks. The models could then autonomously gener-
ate and refine the necessary code, optimizing the results based on
feedback provided by the users. This process eliminated the need
for manual code adjustments, thereby streamlining the devel-
opment workflow and significantly reducing the time and effort
traditionally required for such tasks. The iterative prompt-based
approach ensured that the LLMs could adapt and improve their
outputs, leading to efficient and effective locomotion control for
the humanoid robot.

The structure of this paper is as follows: Section 2 introduced
the related work about the RL and LLMs in legged robots control.
Section 3 describes the overall proposed control framework, the
robot model used, the process of prompts design, and a compar-
ative description. Section 4 describes the formulation of the RL
problem. Section 5 presents the simulation results and analysis.
Section 6 provides a summary of the entire paper and looks
forward to future work.

2. Related work

In this section, we delve into the extensive body of prior
work focused on utilizing RL methods to control legged robots,
as well as the innovative application of language models in
various robotic tasks. The field of RL has seen significant advance-
ments, providing robust frameworks for enabling autonomous
and adaptive behaviors in legged robots. Researchers have ex-
plored numerous RL-based approaches, addressing challenges
such as dynamic balance, terrain adaptability, and efficient loco-
motion strategies. These studies have demonstrated the potential
of RL to replace traditional model-based control methods, offering
more flexible and scalable solutions for complex robotic systems.

Simultaneously, the integration of language models into
robotic tasks has opened new avenues for enhancing robot auton-
omy and interaction. LLMs, with their advanced natural language
processing capabilities, have been employed to facilitate high-
level planning, command interpretation, and even code genera-
tion for robotic control. This dual focus on RL and LLMs represents
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Fig. 1. Overview of Our Work. LLMs undertake three main stages in a humanoid robot control task: trajectory planning, inverse kinematics solving, and reward
function design. The steps guiding LLMs in accomplishing the task are provided (blue). The results generated by LLMs (yellow) are input into the control layer, which
uses a method combining reference gait signals and RL signals (purple).
a convergence of machine-learning techniques aimed at advanc-
ing the capabilities of legged robots. By leveraging the strengths
of both RL and LLMs, researchers are pushing the boundaries
of what robots can achieve, paving the way for more intuitive,
adaptable, and intelligent robotic systems.

2.1. RL control for legged robots

RL [34–36] has emerged as a powerful technique for control-
ing legged robots, offering a data-driven approach that bypasses
he need for explicit dynamic models. Unlike traditional model-
ased methods, which often involve complex computations and
otential model inaccuracies, RL provides an end-to-end solution
hat can adaptively learn from interactions with the environment.
his adaptability makes RL particularly well-suited for the dy-
amic and unpredictable nature of legged robot locomotion. In re-
ent years, significant advancements have been made in applying
L to various types of legged robots [37], demonstrating superior
eneralization, robustness, and the ability to perform complex
ocomotion tasks. This subsection reviews the current state of
L in legged robot control, highlighting critical methodologies,
hallenges, and breakthroughs in the field.
Currently, RL has been widely applied to the motion control

f various legged robots. Ilija et al. [34] proposed a learning-
ased method, using a teacher–student policy during the training
rocess and employing a causal Transformer model as the neural
etwork controller, which takes proprioceptive observations and
istorical actions as inputs to predict the next action. This method
nables the real humanoid robot Digit to walk in various outdoor
nvironments. Xie et al. [38] described the characteristics of poli-
ies through deterministic action stochastic state (DASS) tuples,
eparately training three expert policies for walking forward,
alking in place, and walking backward, and distilled them into
3

a single policy that handles all three tasks. This unified policy
demonstrated stable walking with different gait styles and speeds
on the bipedal robot Cassie. Lokesh et al. [39] proposed learning
a linear policy for walking and navigating the robot Digit on
different terrains. This method achieves transfer from simulation
to reality without any adjustment or use of dynamic randomiza-
tion. The Swiss Federal Institute of Technology in Zurich (ETH)
developed the ANYmal robot [40–42], which has been trained to
integrate proprioceptive and exteroceptive sensing. It can utilize
sensory information from exteroceptive sensors to quickly predict
terrain, while still relying on proprioceptive sensing to adapt
to complex environments when external sensing is unreliable.
ANYmal can traverse various off-road terrains such as mud, sand,
and snow, and even completed a hiking trip in the Alps. In recent
publications, ANYmal demonstrated agile navigation and success-
fully completed various parkour challenges [43]. Tan et al. [44]
enhanced simulation fidelity by developing precise actuator and
delay models and by improving controller robustness through
physical parameter randomization. Deepali et al. [45] proposed
a new hierarchical RL method for quadrupedal locomotion tasks,
demonstrating the automatic decomposition of complex tasks
through the transfer of low-level policies, effectively adapting to
new tasks. They tested the proposed framework on the phys-
ical robot Minitaurs for path-following tasks. Yang et al. [46]
introduced a multi-expert learning architecture (MELA), a hierar-
chical control framework capable of generating adaptive motion
skills achieving extensive motor expertise. The proposed method
was successfully demonstrated on the robot Jueying, achieving
multiple skillful motions.
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.2. LLMs to robot tasks

LLMs [47,48] have increasingly become a focal point in the
ealm of robotics, demonstrating significant potential in enhanc-
ng both the reasoning and planning capabilities required for var-
ous robotic tasks. These models, known for their robust semantic
nderstanding, multi-task processing, and code generation abili-
ies, offer innovative solutions to complex control and planning
roblems that have traditionally challenged roboticists. In this
ubsection, we delve into the application of LLMs in robotic tasks,
xploring how their integration can revolutionize task execution,
rom high-level planning to low-level motion control. We will
xamine the advancements made in using LLMs for autonomous
riving, task, and motion planning, and their recent applications
n directly controlling robotic actions. Through this exploration,
e aim to highlight the transformative impact of LLMs on the
fficiency, adaptability, and overall capability of robotic systems.
LLMs have already been extensively researched in the rea-

oning and planning of robotic tasks [49–52]. This is particularly
vident in the fields of robotic arm control and task planning [53–
5]. LLMs can transform high-level human instructions into spe-
ific operational steps for robotic arms by understanding and
enerating natural language [56,57], reducing the need for com-
lex programming. Moreover, LLMs can enhance the adaptability
nd flexibility of robotic arms by learning the context of different
asks [58]. This capability provides a more intuitive and conve-
ient solution for human–machine collaboration and intelligent
utomation. In addition, LLMs are also applied to solve other com-
lex task planning problems. Wang et al. [59] proposed a novel
LM-driven task and motion planning (TAMP) framework called
LM3, which leverages the reasoning and planning capabilities of
re-trained LLMs to generate symbolic action sequences and con-
inuous action parameters. It iteratively optimizes the planning
cheme based on feedback from motion planning, thereby elimi-
ating the need for manually designed domain-specific interface
odules required by traditional TAMP methods. Zhao et al. [60]
tilized the common sense knowledge of LLMs to guide search
lgorithms (such as Monte Carlo Tree Search) and applied it to
veryday task planning in home environments.
Recently, an increasing number of researchers have applied

LMs to the action control of robots [61–65], not just to high-
evel task planning. Early work typically used standardized text
emplates to translate language into robot commands, but LLMs
annot directly generate low-level robot motion commands, such
s joint position targets. To address this issue, many researchers
everage the code generation capabilities of LLMs to extend low-
evel primitive skills to the full expressive power of code [17,50,
6–68]. These methods often design an intermediate interface to
onnect the LLM and robot commands [69,70].

. Proposed method

.1. Control framework

Our control framework is illustrated in Fig. 2. We utilize the
tate-of-the-art LLMs (ChatGPT-4-turbo) as the primary designer
or locomotion control of a humanoid robot. It assumes three
oles: trajectory planner, inverse kinematics (IK) solver, and re-
ard designer. Initially, users input prompts to the LLMs acting
s the trajectory planner, which outputs trajectories to the sub-
equent LLMs acting as the IK solver. Users also provide relevant
rompts to the IK solver, which outputs a time series of joint
ngles for the robot’s 12-leg joints. Subsequently, the Reward
esigner generates rewards based on given prompts. Our control
ramework utilizes the angle sequences computed by LLMs and
ewards generated through training to achieve forward stable

alking locomotion control for the humanoid robot.

4

We adopt a control approach that combines weighted ref-
erences from gait signals with RL action signals. Introducing
reference signals in RL has proven effective for facilitating train-
ing, such as imitation learning [71] and instruction learning [72].
The reference signal we employ consists of joint angle sequences
for the legs derived from inverse kinematics, representing an
ideal locomotion pattern obtained from pre-planned trajectory
solutions. The RL component achieves task objectives through
reward settings. Here, the signal output from RL is multiplied by
a carefully set weight, balancing the influence of RL and reference
signals. Incorporating reference gait signals enables the robot
to perform relatively reasonable actions early in the learning
process, significantly reducing the time spent exploring random
actions and accelerating overall learning. Meanwhile, RL retains
exploration space to fine-tune the reference signals, maintaining
body balance and generating more humanoid-like locomotion.
Finally, we employ a PD control method to regulate the robot’s
joint movements.

3.2. Robot model

In this paper, we leverage the HIT Hydraulic Robot with a total
of 14 joints, with its center of mass located at the pelvis. Each leg
of the robot comprises six degrees of freedom, including three hip
joints, one knee joint, and two ankle joints. Additionally, there
are two joints at the waist. Specific details of the robot model are
depicted in Fig. 2 (see Fig. 3).

3.3. Prompts design for humanoid control

ChatGPT, trained on extensive large-scale data, excels in both
language understanding and generation. By providing carefully
designed prompts, we can significantly enhance the success rate
of LLMs in generating accurate and contextually appropriate re-
sponses.

In this work, we leverage ChatGPT-4-turbo to fulfill three criti-
cal roles in the locomotion control tasks of humanoid robots: tra-
jectory planner, inverse kinematics solver, and reward designer.
Each role is assigned specific, meticulously crafted prompts to
guide the LLM in performing its tasks effectively. The trajectory
planner is responsible for generating optimal movement paths for
the robot, the inverse kinematics solver computes the necessary
joint angles to achieve these movements, and the reward designer
formulates the reward functions to optimize the robot’s learning
process through RL.

By using carefully designed prompts, we can fully leverage the
LLMs’ excellent programming and design capabilities across vari-
ous tasks. Additionally, through user feedback, LLMs can optimize
the output, thereby providing high-quality solutions for complex
humanoid robot locomotion challenges. This approach not only
streamlines the development process but also demonstrates the
potential of LLMs to handle sophisticated engineering tasks with
minimal manual intervention autonomously.

3.3.1. Trajectory planner
Trajectory planning for the robot aims to provide precise tar-

get positions and orientations for solving the inverse kinematics,
which in turn determines the sequence of joint angles to be used
as reference signals. To achieve this, we leverage LLMs to generate
the position change curves for the center of mass (COM) and the
left and right ankles in the x, y, and z directions within the world
coordinate system. For the target orientations, we simplify the
leg joint solutions by assuming that both feet remain level with
respect to the transverse plane of the torso. Our primary task is
to generate a trajectory that enables the robot to walk forward

effectively and efficiently.
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Fig. 2. LLMs-assisted for Humanoid robot control framework.

Fig. 3. Robot model, physical parameters, and range of joint angles.

5
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Fig. 4. Prompts for trajectory planner.
In designing the prompts, we first included a description of the
otion task, such as walking forward at a speed of 0.25 m/s while
aintaining a constant center of mass height, and clearly speci-

ied the need to generate the trajectories for the robot’s center of
ass and left and right ankles. Additionally, we provided relevant

obot dimensions, such as the distance between the hip joints
which is also the distance between the ankles) and the height of
he pelvis (i.e., the center of mass height) during walking. These
ieces of information are essential parameters and prerequisites
or trajectory planning. Furthermore, gait planning is typically
equired before trajectory planning. However, LLMs cannot flex-
bly perform gait planning based on basic task requirements as
umans do. Therefore, we supplemented the prompts with in-
ormation about gait planning, including step length, step height,
nd gait cycle. Although LLMs were able to generate trajectories
or the center of mass and ankles after receiving these prompts,
here were still some errors in the output. To correct these errors,
e continued to provide more relevant information to the LLMs,
uch as constraints on the output trajectories, gradually guiding
hem to adjust and optimize the results without any manual
ntervention. After several iterations of corrections, we developed
set of prompts that enabled the LLMs to accurately generate

he trajectory curves. The designed prompts consisted of four
arts: a detailed description of the locomotion task, the critical
imensions and parameters of the robot, a comprehensive de-
cription of the gait, and the specific constraints for the trajectory.
he specific details of the prompts are shown in Fig. 4. While
he prompts are highly detailed, they do not prescribe the exact
ype of curve to be used, except for the y-direction trajectory
f the COM. Instead, the LLMs autonomously generate all other
rajectories, ensuring adaptability and flexibility in the trajectory

lanning process.

6

The prompts in Fig. 4 represent a refined version that has been
modified to near perfection through iterative testing and adjust-
ments. However, even with these optimized prompts, there may
still be a need to fine-tune the generated trajectory in specific
directions. This can be achieved by continuing to input addi-
tional prompts to correct any deviations or errors. After this op-
timization process, the resulting trajectory, as depicted in Fig. 5,
demonstrates the effectiveness of using LLMs for sophisticated
trajectory planning tasks. The LLMs’ ability to autonomously gen-
erate and refine these trajectories showcases their potential to
handle complex robotic control challenges with minimal manual
intervention, ultimately streamlining the development process
and enhancing the robot’s performance.

3.3.2. Inverse kinematics solver
An inverse kinematics solver has always been a commonly

used and critical control component in legged robots [73], re-
sponsible for calculating the required joint angles to achieve
specific positions and orientations of the feet. Common methods
for inverse kinematics include analytical methods and numeri-
cal methods. In this paper, we employ the numerical approach
known as the Newton–Raphson iteration method based on the
Jacobian matrix to solve inverse kinematics.

Taking the left leg as an example, we establish the base co-
ordinate system at the center of mass, denoted as 0, and the
coordinate system of the left ankle joint is denoted as 6. By
using the Denavit–Hartenberg (DH) method and analyzing the
link coordinate systems of the leg, we can calculate the pose of
the ankle joint at each time step relative to the base coordinate
system as.

T =
0T (θ , θ , θ , θ , θ , θ ) (1)
current 6 1 2 3 4 5 6
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Fig. 5. Lateral and vertical movement trajectory generated by LLMs. (a) Lateral movement trajectory. (b) Vertical movement trajectory.
Fig. 6. Prompts for IK solver.
here Tcurrent is a function of the six joint variables
(θ1, θ2, θ3, θ4, θ5, θ6) of the leg. Given the desired end-effector

pose (the ankle joint of the robot), all joint positions of the leg
can be solved through inverse kinematics algorithms. We express
all changes in end-effector poses in the base coordinate system.

Tt arg et =
0T 6 = (WT 0)−1WT 6 (2)

where Tt arg et represents the end-effector pose relative to the
base coordinate system, WT 0 represents the centroid coordinate
ystem pose relative to the world coordinate system, and WT 6
epresents the ankle joint pose relative to the world coordinate
ystem.
For small changes in joint angles ∂q, the infinitesimal change

n end-effector pose is denoted as (∂p, ∂w)

δp
δw

]
= Jδq (3)

here J represents the Jacobian matrix. Let fk(θ ) = Tcurrent (i, j) −

end(i, j)(k = 1, 2, . . . , 12), due to the homogeneous transforma-
tion matrix having a rotation matrix with nine elements in the
upper left corner and a positional vector with three elements
in the upper right corner, subtracting these corresponding 12
elements results in 12 equations, which represent the change in
pose. The Jacobian matrix can be calculated by

J(θ ) =

⎡⎢⎢⎢⎢⎣
∂ f1(θ )
∂θ1

∂ f1(θ )
∂θ2

∂ f1(θ )
∂θ3

∂ f1(θ )
∂θ4

∂ f1(θ )
∂θ5

∂ f1(θ )
∂θ6

∂ f2(θ )
∂θ1

∂ f2(θ )
∂θ2

∂ f2(θ )
∂θ3

∂ f2(θ )
∂θ4

∂ f2(θ )
∂θ5

∂ f2(θ )
∂θ6

...
...

...
...

...
...

∂ f12(θ ) ∂ f12(θ ) ∂ f12(θ ) ∂ f12(θ ) ∂ f12(θ ) ∂ f12(θ )

⎤⎥⎥⎥⎥⎦ (4)
∂θ1 ∂θ2 ∂θ3 ∂θ4 ∂θ5 ∂θ6

7

Due to J ∈ R12×6, direct inversion is not feasible. Therefore,
its pseudoinverse is used, yielding the iterative formula for joint
angles:

θn+1 = θn + J+
[

δp
δw

]
(5)

where J+ denotes the pseudoinverse of J. Iteration stops when the
error in the end-effector pose is sufficiently small.

For the complex IK-solving process, we utilized LLMs to gener-
ate code. First, we provided some known conditions, such as the
positions and orientations of the robot’s center of mass and ankles
during motion, and that each leg has six degrees of freedom. Next,
we described the task: please use the Newton–Raphson method
to solve the inverse kinematics for the humanoid robot’s legs.
After inputting this information into the LLMs, we obtained a
basic code framework. This framework appeared comprehensive,
outlining all the steps of the inverse kinematics algorithm, includ-
ing setting the target positions and orientations, computing the
forward kinematics for the legs, iterating the inverse kinematics
solution, and providing examples of Jacobian matrix calculations.
However, this was just a code framework and was not executable.
The LLMs needed more relevant knowledge to generate accurate
results, so we continued to provide the DH parameters for the
robot’s legs, specific formulas for the Jacobian matrix, and the
angular iteration formulas in the Newton–Raphson method. To
ensure LLMs could recognize the formulas, we input them in
LaTeX format. Therefore, the final prompts for solving this task
were divided into four parts: given conditions, task description,
DH parameters for the leg, and relevant formulas. The refined
prompts are depicted in Fig. 6.
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Fig. 7. The Joint Angle Sequence of the Legs. (a) Left leg angles. (b) Right leg angles.
Although no specific steps were provided, the LLMs generated
complete numerical solving framework based on their internal
nowledge, including the setting of target positions and postures,
orward kinematics calculations, the iterative process for inverse
inematics solving, and the computation of the Jacobian matrix.
dditionally, the LLMs automatically specified the solving pre-
ision and the number of iterations. This showcases the LLMs’
xceptional abilities in code generation and algorithm design.
Using the prompts provided above, we generated code and

mported the trajectory generated by LLMs in the previous step
nto the code, resulting in the sequence of joint angles for the left
nd right legs, as shown in Fig. 7. The figure effectively illustrates
he coordinated and periodic movements of a humanoid robot’s
ip, knee, and ankle joints during a walking gait cycle. The distinct
scillation patterns across different joints and axes underscore
he complexity of achieving stable and efficient locomotion.

.3.3. Reward designer
Designing a reward function for RL control methods has al-

ays been a challenging issue due to the complexity and nuance
equired to guide the learning process effectively [11,74]. To
xplore the capabilities of state-of-the-art LLMs in this domain,
e tested whether they could autonomously design a reward

unction capable of achieving human-level performance.
In RL control methods, setting the reward function is cru-

ial for guiding the robot’s behavior, as it formalizes various
ctions of the robot. Therefore, when designing the prompts,
e first described the robot’s behavioral goals, including mov-

ng forward while maintaining body balance, avoiding falls, and
racking the reference angle sequences for the leg joints. During
8

RL training, the robot’s movement is essentially controlled by
adjusting the leg joints, so specifying the number of joints on
the robot is important information in the prompts. Additionally,
the directions represented by the components of the robot’s body
coordinate system are crucial for reward design. For example,
the reward function can be set to reward the robot’s forward
movement speed and penalize speeds in other directions. Dif-
ferent simulation software has different environment code, so
we included the environment code framework for Unity’s RL
module and related APIs in the prompts. Finally, we provided an
example of setting survival rewards for the robot. Through this
example, the LLMs can use their few-shot learning capability to
generate other reward functions consistent with this format. This
approach effectively helps the model understand and generate
reward function designs suitable for RL environments. There-
fore, the prompts for the reward design phase were ultimately
composed of four parts: task description, robot information and
direction explanation, environment code and related APIs, and
example of output format. The specific details of the prompts
are shown in Fig. 8. By inputting these prompts, the LLMs were
able to generate a remarkably reasonable reward function on the
first attempt. Part of this generated code is shown in Fig. 9. We
described the robot’s desired movement goals in the prompts,
such as maintaining balance, walking forward, and avoiding falls,
and LLMs were able to generate reward functions corresponding
to these movement goals. The design of the reward function is a
critical and challenging aspect of RL control methods, and LLMs
fully demonstrated their design capabilities in this task.

Initially, we used the reward function generated by the LLMs
to train the robot. However, the early training results were not
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Fig. 8. Prompts for reward designer.
r

atisfactory. We observed that the hyperparameters preceding
ach reward designed by the LLMs were identical, which neces-
itated further adjustments. To fully leverage the capabilities of
he LLMs in this task, we adopted an iterative feedback approach
ather than direct manual adjustments. We observed various
ituations during training, described them in natural language,
nd provided this feedback to the LLMs.
For instance, the robot initially struggled to maintain balance,

hich led to tremendous negative rewards for failing to keep
he body upright, resulting in significant negative rewards at the
eginning of training. We communicated these issues to the LLMs,
hich responded by not only modifying the hyperparameters for
he target reward function but also automatically adjusting other
elated hyperparameters. This iterative process of refinement
llowed the LLMs to optimize the reward functions effectively,
nhancing the overall training performance. This approach high-
ights the potential of LLMs to autonomously manage complex
asks and improve through iterative feedback, significantly reduc-
ng the manual effort typically required in designing sophisticated
L reward functions.

.3.4. Comparative description
For the three key aspects of the control task discussed in this

aper, we conduct a detailed comparison between the results
enerated by LLMs and those designed by human experts. Firstly,
o better simulate the trajectory of the foot during walking,
uman experts designed the foot lift trajectory as a composite
ycloid, which closely replicates the natural, efficient movement
9

seen in human gait. In contrast, the LLMs automatically generated
a simpler sine curve. While the cycloid trajectory is more complex
and accurate, the sine curve represents a computationally effi-
cient approach, demonstrating the practicality of using LLMs for
rapid prototyping. Both methods employed numerical techniques
for solving inverse kinematics, essential for determining the joint
angles needed to achieve specific foot positions and orientations.
This reveals that LLMs can effectively handle sophisticated math-
ematical modeling, producing results comparable to those crafted
by human expertise.

In the design of reward functions for RL, LLMs generated
reward types nearly identical to those devised by human experts,
showcasing their ability to understand and replicate complex
decision-making processes. However, there were differences in
the specific forms and weights of the reward functions. Human
experts might tailor these parameters based on nuanced under-
standing and experience to optimize performance metrics, while
LLMs, although accurate, might generate more generic reward
structures that require further fine-tuning.

This comparison underscores the potential of LLMs to au-
tonomously manage critical aspects of humanoid robot control
autonomously, offering a balance between efficiency and accu-
racy. This suggests a significant reduction in the workload for
engineers without compromising the quality of the results.

The detailed comparisons are summarized in Table 1 and
Table 2. Here, H represents the step height, T is the walking
cycle, Tm indicates the time spent in the support phase. vforward
epresents the API for forward speed, v∗ is a specific speed value.
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able 1
oot lift trajectory and reward design by human experts.
Foot lift trajectory Reward design

Survival reward Forward reward Upright reward Angle tracking reward Preventing falls

Hypocycloid:
zH (t) =

H
2π (1 − cos(2π t

Tm
))

1 e−|vforward−v∗| −0.01(
⏐⏐θpitch⏐⏐ + |θroll| +

⏐⏐θyaw⏐⏐) 1.2 − 0.1 ·
∑14

i=1(qi − qrefi ) If falling, end episode
Table 2
Foot lift trajectory and reward design by LLMs.
Foot lift trajectory Reward design

Survival reward Forward reward Upright reward Angle tracking reward Preventing falls

Sine curve:
zL(t) = H sin( 2πT (t − t0))

1 1 · vforward 1 − (
⏐⏐⏐ θpitch
180◦

⏐⏐⏐ +

⏐⏐⏐ θroll
180◦

⏐⏐⏐ +

⏐⏐⏐ θyaw
180◦

⏐⏐⏐) ×
1
3 1.5 −

∑14
i=1(qi − qrefi ) If falling, −1, end episode
θpitch, θroll, and θyaw are the body Euler angles, q represents the
urrent joint angle, and qi is the reference angle.

3.4. RL problem formulation

We describe the RL control method as a Markov decision
process (MDP). A Markov decision process is typically described
using a quintuple ⟨S, A, P, R, γ ⟩. Here, S represents the state
pace, A represents the action space, P denotes the state transition
atrix of the environment, where P(s′|s, a) indicates the proba-

bility of transitioning to the next state s’ when taking action a in
state s. R represents the reward function, and γ is the discount
actor. The goal of a Markov Decision Process is to optimize
policy π (a|s) to maximize the cumulative reward obtained

hroughout the learning process. The cumulative reward can be
ormally expressed as: Gt = Rt+1 + γ Rt+2 + γ 2Rt+3 + · · · =∑

∞

k=0 γ kRt+k+1

3.4.1. Hyperparameter and neural network
The RL algorithm used in this paper is the proximal policy opti-

mization (PPO) algorithm, which is suitable for high-dimensional
continuous action spaces and offers high stability [75]. Detailed

parameters of the PPO algorithm are shown in the Table 3.

10
Table 3
Parameters of the PPO algorithm.
Parameter Value

Hyperparameter

Batch_size 2048
Buffer_size 20480
Learning_rate 0.0003
Beta 0.005
Epsilon 0.2
Lambd 0.95
Num_epoch 3
Learning_rate_schedule Linear

Neural network

Normalize True
Hidden_units 512
Num_layers 3
Vis_encode_type simple
Goal_conditioning_type Hyper

3.4.2. Observation
The observations during the RL process in this paper are de-

signed as follows:

Ot = [JP JV θ ω v] (6)

The meaning and dimension of each variable in the obser-
vation space are shown in Table 4. Obviously, the size of the
observation space is 37.
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Fig. 10. Comparison of the performance simulation results designed by LLMs and human experts.
Table 4
The meaning and dimension of each variable in the observation space.
Observation Meaning Dimension

JP The vector of joint angles around the axes 14
JV The vector of joint angular velocities 14
θ The Euler angles of the robot’s body 3
ω The angular velocity of the robot’s body 3
v The velocity of the robot’s body 3

3.4.3. Action
The action space consists of changes in the angles of the 14

oints controlling the entire robot. Notably, the control signals
sed in this paper are not solely the output of the RL policy
etwork. Instead, the robot’s control is achieved by combining the
eighted signals from RL with the reference gait signals derived

rom the inverse kinematics algorithm. The reference gait signals
rovide a basic movement pattern, while RL enables random
xploration in the action space, fine-tuning the reference signals
nd maintaining body balance. The control framework shown in
ig. 2 illustrates the composition of the control signals as follows:

= k · aRL + aRef (7)

where aRL is the control signal output by the RL policy network,
and aRef is the reference joint angle sequence obtained through
inverse kinematics. k is the weighting coefficient, and the value
of k affects the training performance. If k is too small, RL’s ex-
ploration space will be limited. If k is too large, it will reduce
the convergence speed of learning, and the reference gait will
not effectively contribute to the robot’s control. Therefore, after
continuous adjustments based on the training results, we set k =

.5.

. Results and discussions

We conducted the simulation in Unity ML-Agents. The time
tep for each action was set to 0.01 s. All training was per-
ormed using 16 agents copies in parallel to accelerate the train-
ng process. We fixed the robot’s upper body posture in the
imulation.
11
To validate whether the LLMs approach achieves human-level
performance, we compared our proposed method with the hu-
man expert’s approach across three aspects: learning effective-
ness, smoothness of locomotion, and trajectory tracking error.

4.1. Learning efficiency

Fig. 10 illustrates the walking effect observed after the training
phase. The simulation results demonstrate that the LLM-based
method successfully enables the robot to walk forward, maintain-
ing body balance without falling, comparable to the performance
of the human-designed method. This indicates that the LLMs can
effectively replicate the complex locomotion dynamics required
for stable walking in humanoid robots.

Fig. 11 presents the reward curve after training. Although the
LLMs achieve higher final reward values than those achieved by
human experts, these values are not directly comparable due to
the different weights assigned in the reward functions. However,
the key insight from this comparison lies in the convergence
behavior of the reward curves. The LLMs’ reward curve converges
more rapidly, suggesting that the LLMs are capable of optimizing
behavior more quickly. This rapid convergence points to the
efficiency of LLMs in learning and adapting to the control tasks.
Nonetheless, the reward curve for the LLMs exhibits greater fluc-
tuation, indicating a trade-off between speed of optimization and
stability. The increased variability suggests that while LLMs can
quickly reach high-performance levels, they might require addi-
tional tuning or stabilization mechanisms to achieve the same
level of consistent performance as human-designed systems. This
highlights an area for further refinement in the application of
LLMs for humanoid robot control.

4.2. Smoothness of locomotion

To evaluate the stability of the motion, we compared the
forward speed and joint angle fluctuations during the motion
process using both the LLM-based and human-designed methods.
As shown in Fig. 12, the speeds of both methods fluctuate around
0.25 m/s, successfully maintaining a constant forward walking
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Fig. 11. Comparison of the reward curve between LLMs and human experts.

Fig. 12. Comparison of the humanoid speed curve between the LLMs and human
experts.

speed. This consistency in speed indicates that both methods are
effective in achieving stable locomotion.

Fig. 13 illustrates the joint angle variations generated by the
human expert, while Fig. 14 depicts the joint angle variations
produced by the LLMs. We observed that all angle fluctuations
in both methods remain within the normal range of joint angles,
with no significant sudden changes. This observation suggests
that the LLMs can generate smooth and stable motions com-
parable to human-level performance. Notably, the LLM-based
approach results in smoother actual angle change curves for
the robot, which is crucial for ensuring fluid and stable motion
when transitioning from simulation to real-world applications.
The smoothness of these curves is indicative of the LLMs’ ability
12
to refine and optimize motion control strategies, reducing the
risk of abrupt movements that could destabilize the robot. This
enhanced smoothness not only improves the overall performance
but also facilitates a more seamless transition from virtual sim-
ulations to practical, real-world robot operations. The findings
underscore the potential of LLMs to effectively manage and fine-
tune complex robotic control tasks, paving the way for more
advanced and reliable humanoid robot systems.

4.3. Trajectory tracking error

Finally, we wanted to evaluate whether the motion generated
by the LLMs effectively tracks the pre-planned trajectory. Since
the planned trajectory is converted into joint angles in the robot’s
body space by the IK algorithm, we measure the trajectory track-
ing error by evaluating the error between the actual joint angles
and the reference angle sequences. Figs. 15 and 16 show the
trajectory tracking errors. These two methods have error values
around 0–5 degrees, which is an acceptable range for normal
motion.

5. Conclusion

In this work, we propose a method where LLMs act as the
primary designers to accomplish locomotion control tasks for
a humanoid robot. Our control method is designed to use the
reference angle sequences obtained from inverse kinematics as
reference signals, combined with weighted RL signals to form the
final control signals. LLMs complete three key tasks: trajectory
planning, inverse kinematics solving, and reward function design.
For each task, we designed prompts with different components
to input into LLMs, which then generated the corresponding
code and optimized it based on feedback. We validated the lo-
comotion generated by LLMs in Unity and used meticulously
designed human expert locomotion as a comparison. The results
demonstrated that LLMs could successfully execute a forward
walking task for a humanoid robot, achieving human-level per-
formance. Furthermore, they highlight the potential of LLMs to
significantly reduce the workload on engineers and streamline
the development process for humanoid robot control systems.

We only validated the forward walking task in this work. In
the future, we plan to have LLMs complete a variety of walking
tasks, such as turning and stair climbing, and apply them to real
robots.
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Fig. 13. Joint angle variations of the left and right leg using the human expert’s method.

Fig. 14. Joint angle variations of the left and right leg using the LLM-based method.

13
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Fig. 15. Tracking errors of leg joint angles using the human expert’s method.
Fig. 16. Tracking errors of leg joint angles using the LLM-based method.
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