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Abstract— In this article, we address the challenge of predict-
ing the remaining useful life (RUL) of aeroengines, which are
critical components of aircraft that operate under increasingly
extreme conditions as engine performance enhances. Ensuring the
safety and reliability of these engines is paramount. To this end,
we introduce a novel RUL prediction methodology that leverages
gray similarity multiscale matching. This approach employs the
robust capabilities of long short-term memory (LSTM) networks
for processing time-series data. First, an LSTM stacked autoen-
coder (L-SAE) is designed to extract pivotal operational features
of the engine, thereby delineating its degradation trajectory.
Furthermore, the gray correlation analysis is utilized to assess
the similarity between these degradation trajectories, which are
complemented by a multitime scale sliding window technique
for enhanced similarity matching. Subsequently, kernel density
estimation (KDE) is applied to gauge the uncertainty associated
with the prediction outcomes. The efficacy and superiority of our
proposed method are demonstrated through the validation of the
experiment study. Comparative analysis reveals that our method
outperforms existing techniques in key evaluation metrics, under-
scoring its potential applicability to large-scale datasets. This
validation confirms not only the method’s effectiveness but also
its advantage in predicting the RUL of aeroengines with greater
accuracy and reliability.

Index Terms— Gray correlation analysis, remaining useful life
(RUL), similarity matching, stacked autoencoder.

I. INTRODUCTION

PROGNOSTICS and health management (PHM) technol-
ogy is used to monitor the operating status of equipment
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or systems in real time, detect potential failures through
data analysis and predictive models in advance, and provide
optimized maintenance recommendations to maximize equip-
ment reliability and reduce maintenance costs [1]. Remaining
useful life (RUL) prediction is one of the key steps in PHM
technology. This method can detect abnormal conditions and
performance degradation of equipment components through
real-time monitoring and data analysis so that actions can be
taken in advance to reduce losses before the problem develops
into a serious failure.

RUL prediction methods can be divided into model-based
methods, data-driven methods, and hybrid methods [2]. The
model-based methods mainly construct corresponding physical
models for RUL prediction by deeply understanding the oper-
ation mechanism and failure mechanism of equipment [3]. The
data-driven methods utilize failure operation data of the same
type of equipment regularly collected from various real-time
monitoring sensors to estimate the RUL of the equipment
through data-driven models.

The data-driven methods can be roughly divided into
statistical model-based methods, machine learning-based
methods [4], and similarity-based methods based on their
principles. Among them, statistical model-based methods, pre-
dominantly random process models, capture the randomness
and variability of equipment operation by performing probabil-
ity analysis and model fitting on historical data to predict RUL.
Existing statistical models with more applications include
Wiener processes [5], Levy processes [6], and Gaussian pro-
cesses [7]. Machine learning-based methods utilize machine
learning techniques such as multilayer perceptrons [8], support
vector machines [9], [10], and neural networks [11], [12],
[13] to learn complex degradation and failure patterns of
equipment. Neural networks perform well in processing large
amounts of high-dimensional data and often perform well
in predicting the RUL of complex systems. However, neural
networks suffer from the “black box” effect and require a large
amount of labeled data for training.

The initial application of the similarity-based method comes
from [14] in which sample-based reasoning and similarity-
matching matrix prediction are the basis of the similarity-based
prediction (SBP) method. Wang et al. [15] simplified similarity
matching and proposed the trajectory similarity prediction
method in the PHM turbofan engine RUL prediction compe-
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tition in 2008, which is also considered the beginning of the
mature application of the SBP method. Similarity matching
is the core content of the SBP method, mainly involving two
links: similarity matching rules and similarity measurement.
The former is used to determine the degradation behavior for
similarity measurement, while the latter is used to measure the
similarity between different degradation behaviors. Distance
methods [16], [17] are widely used in existing research for
similarity measurement, while normalized mutual correlation
methods [18] and maximum mean difference methods [19]
are used to measure correlation. To overcome the impact of
time delay on calculation, Wang [20] first used dynamic time
window methods for time series matching. On this basis,
Yu et al. [21] further proposed a new zero-centered rule
to extract more similar reference sample segments. Accord-
ing to the specific scale difference of matching rules,
similarity matching rules can also be divided into local
similarity-based and global similarity-based matching rules.
The local similarity-based matching rule uses part of the
degradation trajectory (usually the end) of the equipment under
test as the degradation behavior for similarity comparison [19],
[22]. The global similarity-based matching rule treats the entire
degradation trajectory of the equipment under test as the object
for similarity comparison [15]. Besides using degradation tra-
jectories as the object of similarity measurement, sensor signal
spectra are also directly used for similarity matching [23].

A major drawback of similarity matching methods in
remaining life prediction is their high dependency on data.
These methods typically require a large amount of his-
torical data to find samples like the current state, which
demands high data quality and representativeness. Particularly
in high-dimensional data spaces, the complexity of computing
similarity increases significantly, leading to high computa-
tional costs and time overhead. Additionally, similarity match-
ing methods may be very sensitive to noise, with anomalies in
the data potentially significantly affecting prediction accuracy,
especially when data preprocessing is insufficient [24].

Hybrid methods combine physical model knowledge with
data-driven techniques for remaining life prediction. A com-
mon approach involves using physical knowledge and practical
experience to build analytical models, and then employing
data-driven techniques (such as particle filters and SVM)
to update model parameters based on real-time data. Artifi-
cial intelligence is also frequently integrated with statistical
models. For instance, Zemouri and Gouriveau [25] combined
ANN with autoregressive models for remaining life prediction;
Sankavaram et al. [26] developed a hybrid method integrating
fault diagnosis and remaining life prediction for automotive
and onboard electronic systems; Wang et al. [27] used the
sparse learning feature of RVM to train health index generation
based on similarity methods; Wang and Mamo [28] combined
exponentially weighted moving average control charts with
random forests, integrating multiple evolutionary algorithms
within the random forests. Although these methods address
the limitations of the previous approaches, they are still not
well developed, and there are few reported studies so far [29].

To accurately assess and predict the health status of aero-
engines, this article proposes a RUL prediction method based

on gray similarity multiscale matching. After using the long
short-term memory (LSTM) stacked autoencoder (L-SAE)
model to extract sensor features and generate degradation
trajectories, the gray similarity multiscale matching framework
is used to compare the degradation trajectory sets in the
training set with the degradation trajectory fragments of the
test set samples, thereby determining the reference samples
and performing RUL prediction. Then, the uncertainty of
the prediction results is evaluated, and the kernel density
estimation (KDE) method is used to analyze the prediction
results. The main innovations and creativities of this study are
given as follows.

1) A parameter-based cleaning method for aviation engine
sensors was employed, combining the Mann–Kendall
(MK) test with information entropy to select and screen
performance parameter models.

2) An L-SAE model was proposed to fuse preprocessed
performance parameters, generating a degradation index
that reflects the degradation performance.

3) The gray similarity was introduced into the similar-
ity measurement method, and the RUL prediction was
achieved by combining it with the similarity matching
rules of multiscale sliding time.

The remainder of this article is organized as follows.
Section II describes the proposed method’s detailed progress,
including data preprocessing, building a degradation index,
and RUL prediction. Section III illustrates the experiment
process. Section IV concludes.

II. PROCEDURE OF THE DEGRADATION
INDEX DEVELOPMENT

A. Data Cleaning

In this article, we use the C-MAPSS [30] public dataset to
validate our method. Commercial aviation propulsion system
simulators generate this dataset. This study focuses on the
FD001 data subset, which includes rich signal data from
21 sensors. These sensor signals carry valuable information
about the performance degradation during the engine oper-
ation. However, not all sensors contain relevant information
about equipment degradation. To characterize the engine per-
formance degradation process, it is necessary to identify sensor
data that exhibits monotonic changes with service time.

The MK test is a nonparametric statistical method used to
detect trends in time series data. All sensor signals are input
into the MK test, and for each sensor, the test is applied to
all samples. At a specific significance level, it is determined
whether the sensor data in each sample exhibits a monotonic
trend. If the MK [31] test identifies a significant trend in at
least 90 out of 100 measurements for a sensor, it suggests that
the sensor merits further investigation. The pass rates for all
sensors in the 100 training set samples using the MK test are
shown in Fig. 1, where the dark dashed line represents the
threshold with a pass rate of 0.9.

In this study, it is considered that when the pass rate of the
MK test for a sensor signal is greater than 90%, the data from
that sensor contains significant degradation information and
is effective for RUL prediction. Based on the above results,
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Fig. 1. Sample pass rate of MK test.

sensors with the following numbers, namely 2, 3, 4, 7, 8, 9,
11, 12, 13, 14, 15, 17, 20, and 21, were ultimately selected
for further processing.

Information entropy measures the disorder or uncertainty
in a system. The higher the information entropy, the greater
the uncertainty of a random variable, indicating a larger
amount of information. To reduce computational complexity,
enhance calculation precision, and facilitate the Comparison of
information entropy values across different time series, a win-
dowing approach is employed to partition the time series into
multiple windows. This enables entropy calculations for the
data within each window, and ultimately, the average entropy
value is computed for the entire time series. Considering
variations in the lengths of different samples, a window length
equivalent to 10% of each time series length is selected.

To reduce computational complexity, enhance calculation
precision, and facilitate the comparison of information entropy
values across different time series, a windowing approach is
employed to partition the time series into multiple windows.
This enables entropy calculations for the data within each
window, and ultimately, the average entropy value is computed
for the entire time series. Considering variations in the lengths
of different samples, a window length equivalent to 10% of
each time series length is selected.

The definition of information entropy for sensor parame-
ters as continuous time variables is shown in the following
equation:

H(X) = −

∫
DX

f (x) log( f (x)) (1)

where f (x) is the probability distribution function of the
continuous variable X , and DX is the domain of X . For the
logarithm function in the formula, a uniform base of 2 is used,
making the unit of information entropy bit.

From Fig. 2, it can be observed that although there are
differences in the information entropy of all sensor parameters,
their numerical values are all greater than 0.95, indicating a
certain level of complexity. Therefore, it can be considered
that the selected 14 sensors all contain a significant amount
of degradation information.

B. Data Normalization

Considering that the dataset contains signals from multiple
sensors, each of which may use different units of measurement
for the physical quantities, and that the measurement ranges
of different sensors can vary significantly, it is possible that
the readings from certain sensors may be more prominent,

Fig. 2. Information entropy of sensor information.

while the contributions from others may be relatively minor.
For these reasons, normalizing the data is essential. Normal-
ization brings all indicators to the same order of magnitude,
reducing the bias caused by differences in the magnitude of
sensor values and ensuring a more balanced contribution from
each sensor to the overall data analysis. Common normaliza-
tion methods include Z -Score standardization, the Min-Max
method, the Softmax function, and the Sigmoid function.
To preserve the relative relationships in the original data, this
article adopts the Min-Max method to normalize the selected
14-D sensor signals, mapping the data to a specific range
through linear transformation. The specific formula for this
method is as follows:

Xnorm =
X − Xmin

Xmax − Xmin
(2)

where X represents the original signal data, Xmax and Xmin
correspond to the maximum and minimum values in the
original data, respectively, and Xnorm denotes the signal data
obtained after normalization.

C. Smooth Filtering

After normalizing the sensor data following data cleaning
and considering the potential presence of noise components in
the signal, further smoothing filtering is applied to the data.

The exponential moving average (EMA) method assigns
different weights to all observed values based on the time
elapsed between the observation moment and the current
moment. However, the exponential weighted average method
with a fixed smoothing parameter still has certain limitations
in practical use. To address the issues mentioned above, this
chapter proposes an improved exponential weighted average
filtering method based on dynamically adjustable smoothing
parameters. For different stages of changes in the time series,
adaptive smoothing parameters are employed, using smaller
values when the data changes are minor and larger values
when the data changes are significant. The new expression is
as follows:

Et = αt · xt + (1 − αt ) · Et−1 (3)

where αt is the dynamically adjustable smoothing parameter,
which is designed to determine whether to use a smaller
smoothing parameter αmin or a larger smoothing parame-
ter αmax based on the rate of change within the window of the
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Fig. 3. Comparison of signal filtering effects.

original data. The specific calculation formula is as follows:

αt =

{
αmin, ratet < R
αmax, ratet ≥ R

(4)

ratet =
|xt−N+1 − xt |

xt
(5)

where N is the size of the sliding window, ratet represents the
rate of change of the original signal within the sliding window
of size N at time t , and R is the threshold used to evaluate
the rate of change within the window.

The effects of processing using both the original EMA
method, and the improved EMA method are shown in Fig. 3.
For the original EMA method, the α was set to 0.5, while
for the improved method, the sliding window size was set
to 10, the rate of change threshold R was set to 0.4, and
the smoothing parameters αmax = 0.8 and αmin = 0.2 were
applied. As observed in the figure, both filtering methods
significantly reduced the impact of noise on the original signal.
However, in terms of smoothness and denoising effectiveness,
the improved method outperformed the original EMA method,
providing more effective smoothing and noise reduction for the
original signal.

D. L-SAE Build Degradation Index

During the operation of the equipment, multiple sensors
monitor the equipment simultaneously, resulting in multiple
observations forming a multidimensional time series. Using
dimensional reduction methods to fuse multidimensional data
into a degradation index to monitor degradation helps to con-
sider comprehensively monitoring information from multiple
perspectives.

A stacked autoencoder is a type of neural network model
that learns to encode and decode data. It consists of multiple
stacked autoencoders, each of which learns to encode and
decode its input data. The stacked autoencoder learns how to
map high-dimensional input data to low-dimensional represen-
tations during training. Compared to ordinary autoencoders,
the multilayer structure of stacked autoencoders enables them
to learn multilevel representations of data, from low-level
features to high-level abstract features, which helps the model
better understand and represent data.

Given that sensor data is temporally correlated, LSTM
layers are used to capture the temporal dependencies of the

Fig. 4. L-SAE structural diagram.

data. To enhance the mapping ability of the autoencoder,
a two-stacked structure consisting of LSTM neural networks,
also known as the L-SAE model, is adopted, as observed
in Fig. 4.

The hidden layers 1 and 3 use the ReLU function as the
activation function, which enhances the sparse nature of the
network and improves training speed. The output layer uses
the Tanh function as the activation function. The mean squared
error function is selected as the loss objective function for the
L-SAE model, and Adam is used as the optimizer for model
training.

Suppose the autoencoder only learns and reconstructs mul-
tidimensional sensor data in normal states. In that case,
its performance will be good when reconstructing normal
data, but it may produce large errors when reconstructing
degraded data. That is to say, the reconstruction error can
reflect the degradation level of the equipment. The greater
the degradation, the larger the reconstruction error, and vice
versa. Therefore, the reconstruction error can be used as a
health index. This method helps to eliminate the differences in
health indices between individuals caused by unknown factors,
improving the robustness of the index to noise.

In general, turbofan engines are in normal operation at
the initial stage, and this initial state occupies about 20%
of the entire life cycle [32]. Therefore, this article chooses
to use the data of the first 20% of the operating cycles of
each sample in all training sets in the FD001 dataset as the
training set data to train the L-SAE model in an unsupervised
manner. The purpose of this strategy is to utilize the data of
the initial normal operation state to learn through the L-SAE
model, thereby better capturing the operational characteristics
and degradation trends of the engine.

Assuming that the entire life cycle data of the i th training
sample is X i

= {x i
1, x i

2, . . . , x i
n}, and only the normal operating

cycle data {x i
1, x i

2, . . . , x i
normal} is used to train the L-SAE

model, the degradation index of the i th training unit at time t
can be obtained by reconstructing the error εi

t = ∥x i
t − x̂ i

t∥2,
where x i

t is entire life cycle data of the i th training sample,
and x̂ i

t is reconstruction sample. The calculation formula of x̂ i
t
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Fig. 5. Similarity matching RUL prediction process.

is as follows:

X̂ = fd
(
W ′ Z + bd

)
(6)

where fd(·) is the activation function of the decoder, θ d =

{W ′, bd} represents the network parameters of the decoder, and
W ′ and bd are the weight and bias of the decoder, respectively.

III. PROCEDURE FOR RUL PREDICTION

After the building of the degradation index, the next step is
the prediction of RUL with the developed degradation index.
This section introduces the procedure of RUL prediction,
as shown in Fig. 5.

A. Similarity Measurement Based on GRA

The similarity measurement method must effectively cap-
ture the resemblance between equipment states, ensuring that
the selected metric accurately reflects the similarity between
degradation behaviors. In this article, we employ gray rela-
tional analysis (GRAs) for similarity measurement. GRA,
a multifactor statistical method, evaluates the influence of
various factors in systems with incomplete information, rank-
ing them based on their impact. It is particularly useful for
handling incomplete or unstable data due to its adaptability
and interpretability. GRA quantifies similarity by comparing
trend patterns rather than absolute values. The general steps
of GRA are as follows.

1) Positive Exponential Transformation: Convert the min-
imization, intermediate, and interval indices uniformly
into maximization indices. In a maximization index,
a larger value represents a better outcome.

2) Identify and Analyze the Sequence: It is necessary
to determine the main sequence and the subsequence
objects. The main sequence typically encompasses the
primary trends or characteristics that need to be ana-
lyzed, while the subsequences refer to the data sequences
that constitute the factors capable of explaining or influ-
encing the overall behavior of the system.

3) Preprocess the Variables: To eliminate the impact of
dimensions and reduce the range of variables to simplify
calculations, preprocessing operations are necessary. The
method of mean normalization is used to remove dimen-
sions from the main sequence and all subsequences.
which can be calculated using the following equation:

f (x(k)) =
x(k)

x̄
= y(k) (7)

where x(k) represents the comparison sequence, that is,
the subsequence, and x̄ = (1/n)

∑n
k=1 x(k) denotes the

mean of the corresponding subsequence.
4) The correlation coefficients between each index in the

subsequence and the parent sequence can be com-
puted using the following equation (8), as shown at

the bottom of the next page, where x0(k) represents
the parent sequence, xi (k) represents the i th subse-
quence, mini mink |x0(k) − xi (k)| represents the distance
on the dimension closest to the parent sequence among
all dimensions of all subsequences. ρ is a coeffi-
cient controlling the discriminant ability, also known
as the resolution coefficient, generally taking val-
ues in the range [0, 1], where a smaller ρ implies
stronger discriminative ability, with 0.5 often considered
appropriate.

5) Take the mean of the correlation coefficients for each
subsequence to obtain the final gray correlation degree

ρoi =
1
m

m∑
k=1

ζi (k). (9)

In the above equation, the result is obtained by taking the
average of the total sum. If each index plays a different role
in the comprehensive evaluation, a weighted average of the
correlation coefficients can be calculated

ρ ′

oi =
1
m

m∑
k=1

wk · ζi (k). (10)

Overall, GRA reveals the similarity and degree of associa-
tion between different sequences by calculating and comparing
their relational coefficients.

B. Similarity Matching

To identify similar degradation behaviors in the training set
compared to the test samples, you could traverse all lengths
of degradation behaviors. However, this approach significantly
increases the computational load. To simplify the search, it is
common to select degradation behaviors of fixed length for
the test samples.

Given a certain number of training set reference samples,
where the health index of the i th reference sample is denoted
as H i

= {hi
1, hi

2, . . . , hi
Ti
}, and Ti is the full lifespan length of

the i th reference sample, representing the duration until failure
or damage occurs. The health index of the j th test sample is
Z j

= {z j
1, z j

2, . . . , z j
t j
}, where t j is the last recorded moment

for this sample, at which point the test sample has not yet
experienced failure or damage.

In extracting degradation information from samples, the
concept of a sliding time window is used. Assuming the
window size is τ , it is generally considered that the last
degradation trajectory segment of the test sample contains
more degradation information and better represents the degra-
dation state of the sample. Therefore, the last trajectory
segment Z j

τ = {z j
t j −τ+1, z j

t j −τ+2, . . . , z j
t j
} of the test sample is

selected as the object for similarity matching. For reference
samples, it is usually assumed that the overall information
of the reference samples needs to be considered. Therefore,
Ti − τ + 1 trajectory segments of length τ are divided
from the reference sample, specifically represented as H i

τm
=

{hi
m, hi

m+1, . . . , hi
m+τ }, where m = 1, 2, . . . , Ti − τ + 1. These

trajectory segments constitute the reference segments of the
i th reference sample.
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Fig. 6. Schematic of similar matching RUL prediction.

The specific similarity matching prediction method can be
seen in Fig. 6. Here, we use the reconstruction error εi

t
as a HI. This approach helps eliminate the differences in
health indices between individuals caused by unknown factors,
thereby enhancing the index’s robustness against noise. In this
work, the reconstruction error is employed to measure the
device’s health condition, making the constructed health index
more representative. The red and blue curves represent the
degradation behaviors of the test sample and the reference
sample, respectively. For the test sample, a segment from
the end of the trajectory is selected (highlighted in red)
and compared with multiple trajectory segments from the
reference sample to find similar matches, thereby pinpointing
the highlighted blue segment. This allows for the prediction
of the RUL of the test sample.

Assuming a sliding window group M = {τ1, τ2, . . . , τn},
where n is the number of different-sized sliding windows in
the group and 0 < τ1 < τ2 < · · · < τn . Considering the
presence of small-sized samples in the test set, to ensure that
each test sample can be processed by the sliding window group
{τ1, τ2, . . . , τn}, the minimum sliding window size must be
smaller than the minimum length of the test sample, that is
τ1 ≤ T test

min . Additionally, it is required to ensure that the sliding
window does not exceed the length of any test sample and
that the maximum sliding window length is smaller than the
minimum length of the reference sample. This ensures that
each reference sample can be processed by the sliding window
group M = {τ1, τ2, . . . , τn}, so the maximum sliding window
size must also satisfy τn ≤ min(T test

max, T train
min ). To better describe

the overall degradation of reference and test samples, the set
{τ1, τ2, . . . , τn} is defined as an arithmetic progression.

Different sliding window sizes are used because the right
size is essential for retaining effective degradation information.
A size that is too small may miss important details, while one
that is too large may add redundant data. Since mechanical
equipment degradation occurs in stages with varying rates,

a multiscale sliding window group is employed to account for
these differences. This method helps capture key degradation
information more comprehensively, reducing information loss
and redundancy, and improving similarity matching accuracy
and robustness.

For the FD001 sub-dataset, considering that the minimum
length of the test samples is 31, and the minimum time scale
should not exceed the minimum length of the samples, τ1 is
set to 31. Additionally, if the time scale is greater than 100, the
extracted segments may contain too much interference noise.
Therefore, the maximum length of the sliding window is set to
be less than 100. For uniform partitioning, the interval between
time scales is ultimately set to 20, i.e., 1τ = 20. Considering
the above conditions, the final set of multiscale time windows
is determined to be (31, 51, 71, 91). This design considers
the characteristics of the test sample length, ensuring that the
selected sizes can cover the time range of the samples and
avoid introducing too much noise with overly small or large
windows.

C. Estimation Fusion

After using multiple sizes of sliding time windows to pro-
cess the trained health indicators and establish a degradation
model reference library, each size is used to extract segments
from the test degradation trajectory and match them with
the reference library. By calculating gray relational degrees,
similar trajectory segments are identified in the degradation
model reference library and treated as reference samples.

At each time scale, a series of similar segments satisfying
the conditions can be selected using the following equation,
where I represents the set of all training units in the degrada-
tion model reference library, λ is the adjustment factor used
to adjust the similarity requirements for reference segments,
and Wk is the set of training units that satisfy the conditions:

ρi, j
τk

≥ λ max
s∈I

(
ρs, j

τk

)
, i ∈ Wk . (11)

Suppose, at time scale τk , the starting point of the degrada-
tion trajectory segment for the i th training unit of the jth test
sample is denoted as L i, j

τk , where Ti represents the full lifespan
length of the i th reference sample training unit. The RUL of
the i th reference sample at time scale τk can be calculated
using the following equation, where the parameters are as
indicated and can be referenced:

RULi, j
τk

= Ti − L i, j
τk

− τk + 1. (12)

At each scale, a series of predicted RUL values
{RULi, j

τk
|i ∈ Wk} can be obtained. Generally, it is believed that

the higher the similarity between the degradation trajectory
segments of the test sample and the reference sample, the
more similar the degradation performance of the two samples.
Therefore, the RUL values of these reference sample degra-
dation trajectory segments will be closer to the actual RUL

ζi (k) =
mini mink |x0(k) − xi (k)| + ρ · maxi maxk |x0(k) − xi (k)|

|x0(k) − xi (k)| + ρ · maxi maxk |x0(k) − xi (k)|
(8)
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Fig. 7. Result of adjusting factor parameter iteration.

value of the test sample. The weight of the RUL RULi, j
τk

for
the ith reference sample determined by the j th test sample
at time scale τk is obtained based on gray similarity using
the following equation, where ρ

i, j
τk represents the similarity

corresponding to the degradation trajectory segment of the
i th reference sample training unit found for the j th test sample
at time scale τk :

wi, j
τk

=
1/ρ

i, j
τk∑

s∈I 1/ρ
s, j
τk

, i ∈ Wk . (13)

At each time scale, a series of weights can be obtained
according to the above formulae. These weights, along with
the RULs of the training units that satisfy the conditions,
can be used to calculate the RUL of the j th test sample.
Specifically, see the following equation:

RUL j
=

∑
τk∈M

∑
i∈Wk

wi, j
τk

· RULi, j
τk

. (14)

After performing multitime scale similarity matching on all
turbofan engine fan blades in the training set, it is necessary
to determine an appropriate adjustment factor λ to select a
certain amount of reference samples that meet the similarity
coefficient requirements. If this value is too large, the final
number of reference samples may be too small, leading to
higher errors. If the value is too small, some reference samples
with relatively low similarity may be used to predict the
final results, introducing errors. Considering that the numerical
value of this parameter does not have a significant impact
on other parameters, an iterative optimization approach is
adopted to determine its value. After iterative optimization, the
adjustment factor is determined to be set at 0.93. The specific
iteration process can be seen in Fig. 7.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The entire process of RUL prediction of aeroengine is
shown in Fig. 8.

To further demonstrate the effectiveness and feasibility
of the proposed method in this article, we employ penalty
functions and root mean square error (RMSE) for evaluation.

The specific formulas are as follows:

RMSE =

√√√√ 1
N

N∑
j=1

(
1 j

)2 (15)

Score =

∑
k

S j , S j =

 e−
1 j
b1 − 1, 1 j ≤ 0

e−
1 j
b2 − 1, 1 j > 0.

(16)

In the formula, 1 j represents the absolute error, and 1 j is set
to EstimateRUL j − TrueRUL j , k is the sample number of test
dataset, and b1 = 10, b2 = 13.

In addition, a new evaluation metric, namely the composite
indicator (CI), has been introduced. This metric comprehen-
sively considers the impact of both RMSE and penalty scores
on the predictive results. Its aim is to balance the importance of
accuracy and timeliness when assessing model performance.
Specifically, the design intent of this metric is to emphasize
the importance of RMSE for accuracy while highlighting the
emphasis of penalty scores on timeliness. Following equation
gives the specific formula:

CI = 0.3 × RMSE + 0.7 × Score. (17)

Typically, the engine unit operates normally in the early
stages and then undergoes linear degradation. According to
research findings, considering the negligible losses of a turbo-
fan engine in the initial stages of operation, it can be assumed
that the RUL of the engine remains constant before the onset of
degradation. In this article, referring to previous studies [32],
a value of Rearly = 125 is adopted. By setting RUL labels
during the early degradation phase, the RUL labels of the
training set are adjusted accordingly, as illustrated in Fig. 9.

To analyze the predictive performance of the multiscale
sliding window RUL prediction method, this article selects test
samples 13, 16, 60, 93, and 99 from the FD001 dataset with
different operating cycle lengths as typical examples. This is
done to validate the proposed method’s prediction accuracy for
test samples with varying operating cycles. A comparison is
made between single-scale prediction and multiscale sliding
window prediction methods, using the relative error as the
evaluation metric. The results of the comparison are shown in
Table I. From Table I, it can be observed that although the
samples have different operating cycle lengths, the predictive
results of the multiscale model are superior to those of the
single-scale model. Additionally, a comparison analysis of the
number of reference samples reveals that the proposed mul-
tisample weighted method outperforms the weighted results
obtained by selecting the most similar sample at each scale
and then combining the predictions for the four samples. This
emphasizes the importance of an adequate number of reference
samples. Consequently, the multi-time-scale sliding window
framework overcomes the accuracy limitations of a single
fixed-scale matching, and the fusion of multiscale prediction
results enhances the generalization capability of the method,
contributing to improved generalization and accuracy in RUL
prediction.

To further analyze the differences in the predictive perfor-
mance of the SBP method at various operating durations, RUL
predictions are made at fixed intervals starting from halfway
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TABLE I
COMPARISON OF PREDICTION RESULTS BETWEEN SINGLE-SCALE AND MULTI-SCALE SIMILARITY MATCHING

Fig. 8. Flowchart of aeroengine remaining life prediction based on L-SAE health index construction and gray similarity multiscale matching.

Fig. 9. Schematic of RUL label correction.

through the life cycle until the end of the life cycle. Given that
the maximum sliding window size in the multiscale sliding
window is 91, and to ensure an ample amount of data is
available as the proportion of service life gradually increases,
only test samples with actual operating cycle lengths exceeding
190 are considered. The selected evaluation metrics include
mean absolute error (MAE), RMSE, and penalty scores. The
evaluation metrics for the predicted results of test samples vary

TABLE II
EVALUATION METRICS FOR RUL PREDICTION RESULTS

UNDER DIFFERENT RUNNING TIMES

with the operating duration, as shown in Table II, where MAE
and RMSE exhibit a clear monotonic decrease trend.

From Table II, it can be observed that as the operating
duration increases, the scores of all three evaluation metrics
show a decreasing trend. In other words, as the equipment
or system is used for a more extended period, the predictive
errors for RUL gradually decrease. This trend aligns with
the general pattern observed in early predictions, where data
from the early stages of equipment operation contain less
degradation information. With the increase in operating time,
more degradation information accumulates in the data, leading
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TABLE III
COMPARISON OF PREDICTION RESULTS OF RUL PREDICTION METHODS

TABLE IV
COMPARISON OF DIFFERENT DATA SMOOTH FILTERING METHODS

TABLE V
PREDICTION RESULTS OF HI COMPARISON EXPERIMENT

to more accurate RUL predictions. This implies that after a
certain period of system operation, the prediction method can
provide more accurate estimates of future service life. This
study reflects that in the early stages of equipment operation,
the accuracy of the prediction model may be relatively low
due to limited degradation information. However, over time,
as the equipment experiences more operating conditions, the
prediction model can better learn and adapt to the true oper-
ating state of the system, thereby improving the accuracy of
predictions.

To further validate the effectiveness of the proposed method,
three evaluation metrics were employed to compare the pre-
dictive performance of this study with several methods from
more recent literature. The comparative results are presented
in Table III.

In the previous Section II, we proposed using the improved
EMA for smoothing the data. Here, we compared the original
data with the EMA prediction results, and the experimental
results are as follows.

As shown in Table IV, the proposed improved EMA demon-
strates its advantages by reducing the MSE and enhancing
prediction accuracy.

Additionally, we compared the PCA and ISOMAP methods
with the L-SAE model proposed in this study, while keeping
other variables unchanged. The RUL prediction was conducted
using a similarity-based matching approach, with RMSE and
the penalty function as evaluation indices. The experimental
results are shown in Table V.

By comparing RMSE and the penalty function, it can be
observed that the prediction indices obtained through the
L-SAE dimensionality reduction are lower than those of other

Fig. 10. Evaluation of uncertainty in engine RUL prediction.

methods. This indicates that in the task of RUL prediction,
L-SAE outperforms other dimensionality reduction methods,
leading to a more accurate estimation of the equipment’s
remaining life in practical applications.

To depict the uncertainty of RUL prediction results, this
section employs the KDE method that can fit the distribution
of RUL, which is based on acquired initial RUL and corre-
sponding weights. As a nonparametric method, KDE does not
require prior knowledge and can be used to estimate unknown
probability density functions. Given the convenient mathemat-
ical properties of Gaussian kernels and their common usage in
the absence of prior knowledge about RUL distribution, this
section adopts the widely used Gaussian KDE method.

As an example, uncertainty assessment for the predicted
results of the 19th sample in the test set is illustrated in Fig. 10.
The red and light blue vertical lines represent the true RUL
and the predicted RUL, respectively. The blue curve shows
the probability density function of the predicted RUL, while
the pink-shaded area indicates the range covered by the 95%
confidence interval of the prediction. According to the model’s
prediction, the predicted RUL for engine sample No. 19 in the
test set is 67, with a 95% confidence interval of (35, 101).
A 95% confidence interval means that in repeated sampling
and interval construction, we expect 95% of these intervals to
contain the true parameter value. In this experiment, since the
true RUL is 87, we consider our prediction to be reliable.

In terms of computational complexity, we conducted exper-
iments on a machine equipped with an i9-13900K CPU and an
Nvidia RTX 4080 GPU. The AE component was implemented
in Python using PyTorch, while the RUL component was
developed in MATLAB. The Python execution took 5 s, and
the MATLAB execution took 13 s, resulting in a total runtime
of 18 s. Additionally, we ran the program on a machine
without GPU acceleration, which took approximately 20 s.
This demonstrates the advantage of our method in practical
applications, where real-time performance is a critical factor,
particularly in RUL prediction for aircraft engines.

V. CONCLUSION

This article employs a parameter-based approach for clean-
ing sensor data from aviation engine sensors. Utilizing the MK
test-based parameter selection method, the study filters out
complex information in the dataset by considering the mono-
tonic performance of sensors, excluding sensor data unrelated
to engine degradation. Subsequently, a degradation trajectory
construction method based on L-SAE is applied to the filtered
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sensor data, involving normalization and smoothing for noise
reduction. The L-SAE model is then utilized to fuse and reduce
the dimensionality of the multidimensional data, forming a
degradation index and thereby constructing the engine’s degra-
dation trajectory. Finally, this article proposes and validates a
RUL prediction method based on gray similarity multiscale
matching. Through gray correlation analysis and multiscale
matching techniques, the method comprehensively considers
the dynamic changes in the engine’s operational state, leading
to improved prediction accuracy and stability. Experimental
results demonstrate the superiority of the proposed approach.
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