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Abstract— In actual industrial production, differences in prod-
uct ion conditions lead to variations in the collected data
distribution. This gives rise to a particular problem: while one
set of conditions has complete status data available, another set
only possesses data from the healthy state. Differences in data
conditions result in limitations for diagnosing the new condition.
To address this challenge, a method based on envelope order spec-
tra for data generation is proposed. Initially, envelope and order
analysis are conducted on raw vibration data to align envelope
spectra across different domains and extract domain-independent
signal components—the envelope order spectra. Subsequently,
an enhanced variational autoencoder generative adversarial net-
work (VAEGAN) is trained using the envelope order spectra. The
trained model is then employed to generate synthetic envelope
order spectra, serving as data augmentation for another set
of working conditions, thereby achieving cross-domain data
augmentation. Next, the augmented envelope order spectra data
are used to train a generic model for fault classification, enabling
cross-domain fault diagnosis. Finally, the proposed approach is
validated by testing it with real envelope order spectra data from
a different working condition. Experimental results demonstrate
that the proposed method can generate reliable fake data under
diverse working conditions, accomplishing cross-domain data
augmentation and fault diagnosis while preserving data privacy.

Index Terms— Cross-domain data augmentation, data imbal-
ance, envelope order spectrum (EOS), fault diagnosis, variational
autoencoder generative adversarial networks (VAEGANs).
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I. INTRODUCTION

IN THE realm of modern manufacturing, real-time mon-
itoring has become a ubiquitous practice for overseeing

equipment within factories. This proactive approach empow-
ers engineers to continually evaluate the health status of
equipment based on monitored data, facilitating the timely
identification and precise diagnosis of potential faults. Build-
ing on this foundation, engineers and factory managers can
swiftly collaborate to address faults, implement intelligent
scheduling schemes, and effectively manage and rectify issues.
This comprehensive strategy aims to proactively mitigate
safety and economic risks associated with equipment failures.
Notably, among the crucial components of rotating machinery
products, rolling bearings assume a pivotal role. Operating
under demanding conditions, including high-speed operations
and heavy loads, these bearings often endure prolonged peri-
ods of continuous operation in actual production processes.
Consequently, they represent a primary focus for health mon-
itoring initiatives. If the bearing fails, it can affect the overall
performance of the mechanical equipment, causing downtime,
expensive maintenance, and hidden costs to the enterprise.
In severe cases, it can even lead to serious safety accidents.

Recently, many scholars have committed themselves to
developing effective and accurate fault diagnosis methods for
rolling bearings, aiming to ensure their seamless operation
and enhance the safety and economic benefits of mechanical
products. These methods can be categorized into traditional
signal processing-based diagnostic approaches and data-driven
intelligent diagnostic methods, catering to the requirements
of subjective analysis and reasoning. Traditional fault diag-
nosis methods, which are based on signal processing, aim to
detect and diagnose faults in complex, dynamic signals (e.g.,
vibrations) with low signal-to-noise ratios. These methods
use techniques, such as denoising, filtering, time–frequency
analysis, and signal decomposition, to extract fault features [1].
They have been applied in the health management of critical
equipment, such as offshore wind turbines [2], intelligent
manufacturing systems [3], and key components, such as
bearings and gears. Specifically, signal processing techniques,
such as wavelet transform [4], wavelet packet transform [5],
Hilbert–Huang transform (HHT) [6], and empirical mode
decomposition (EMD) [7], are classic and commonly used
technical tools in this context. In recent years, they have seen
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wide application and rapid development in the signal analysis
of mechanical fault diagnosis. However, this process is com-
plex and less intelligent than current data-driven methods.

With the advent of the era of big industrial data, intelligent
diagnostic methods have attracted significant attention due to
their robustness and ability to make complex calculations, such
as convolutional neural networks (CNNs) [8], autoencoder
(AE) [9], and deep belief networks (DBNs) [10], among oth-
ers. Liu et al. [11] proposed a fault detection method utilizing
acoustic emission signals, combining wavelet region correla-
tion threshold denoising (WRCTD) and a fusion of operational
modal analysis (OMA) and variational mode decomposition
(VMD) for enhanced efficacy. Peng et al. [12] proposed a
residual neural network for intelligent fault diagnosis with
bearing-free-label contrastive learning (BYOL). Xu et al. [13]
proposed a cross-modal fusion CNN (CMFCNN) for mechan-
ical fault diagnosis to address the issue of data distribution
gap from multisource mechanical signals. Wang et al. [14]
introduced a fully interpretable neural network that utilizes
statistical quantities to replace extreme learning machines
(ELMs) for machine state detection. Sun et al. [15] proposed
a CNN collaborative fault diagnosis method under the frame-
work of swarm learning to address the issue of insufficient
data. Meanwhile, Sun et al. [16] also proposed a method
that utilizes wavelets and filters as a substitute for CNN,
aiming to capture distinctions among various local models.
Hou et al. [17] proposed a data-driven optimized square enve-
lope spectrum, termed OSESgram, for selecting the optimal
informative frequency bands (IFBs) in vibration-based bearing
fault diagnosis. In addition, Zhou et al. [18] established a new
semisupervised method for dealing with limited training data
based on deep convolutional generative adversarial networks
(DCGANs). Xiao et al. [19] proposed a joint transfer network
for unsupervised bearing fault diagnosis, transferring from
simulation domain to experimental domain. Zuo et al. [20]
introduced a probabilistic spike response model (PSRM)
with a multilayer structure to improve the performance of
SNN in bearing fault diagnosis. Su et al. [21] proposed
a data reconstruction hierarchical recursive meta-learning
(DRHRML) method for bearing fault diagnosis under different
working conditions. Finally, Yan et al. [22] proposed a novel
weight-oriented optimization model for simultaneous inter-
pretable initial fault detection and fault diagnosis. In essence,
artificial intelligence (AI) has propelled the advancement of
real-time data-driven intelligent fault diagnosis, showcased
remarkable potential, and attracted increased attention. Nev-
ertheless, these sophisticated fault diagnosis methods often
require substantial datasets, and practical industrial appli-
cations frequently face challenges related to inconsistent
data distribution, commonly known as domain shift. This
issue substantially impairs the performance of data-driven
models.

Within the domain of data-driven fault diagnosis, the ceiling
is often determined by the quality and quantity of data,
a common challenge encountered in practical production.
In real-world applications, available training data are rarely
perfect and frequently lack either in quantity or quality. For
instance, within the fault history dataset of a particular factory,
there is an abundance of data samples for common and

frequently occurring fault types, but a shortage of samples
for rare faults. In the event of a rare fault occurring in a
critical component, a model trained on such a dataset may
struggle to provide timely and reliable diagnoses, potentially
leading to severe consequences. Moreover, the vibration data
distribution of the same bearing can vary under different
operating conditions. If the training data do not fully align with
the operational scenarios, the model’s generalization capability
may be compromised. As a result, it is essential to explore
the insufficient availability of labeled training data and the
challenges of training across various working conditions.

Data generative models [23] are a viable approach to
deal with data insufficiency. These models generate similar
sample data by learning the characteristics of the original
existing sample data, forming enough data to work with.
A generative adversarial network (GAN) [24] is a represen-
tative data generation model, which solves the problem of
insufficient samples by expanding sample data. It has been
widely used in the field of image analysis and is now also
applied in bearing fault diagnosis. Therefore, in the scenario
of insufficient training data, leveraging the existing data to
train a generative model and subsequently utilizing the newly
generated data for data augmentation emerge as a viable
solution. Nevertheless, in actual production scenarios, varied
working conditions might yield adequate fault data collection
in one scenario, posing challenges or encountering sample
shortages in another. This situation may result in the generative
model, trained on the existing data, producing generated data
that do not completely align with the authentic distribution,
particularly lacking in generated data for specific conditions.
Many fault diagnosis studies overlook practical application
scenarios, prioritizing idealized laboratory simulations. Thus,
we aim to minimize the impact of cross-condition variations
during the data generation phase by considering real-world
production scenarios.

In response to the scarcity of labeled fault data for certain
bearings in practical production and the challenges posed by
domain differences between training and testing data leading to
poor generalization, this article proposes an effective method
for generating fault data. Specifically, Hilbert transformation
and fast Fourier transformation (FFT) are applied to the
time-domain signals from sensors. Subsequently, an order
analysis is conducted on the resulting envelope spectrum to
extract signal components unrelated to the domain, obtain-
ing an envelope order spectrum (EOS). Next, an EOS-based
variational autoencoder GAN (EOS-VAEGAN) is designed to
form a generative model. Leveraging the EOS data, this model
generates fault data adaptable to different working conditions.
The main contributions of this article are as follows.

1) This article employs an enhanced VAEGAN to gen-
erate data samples for data augmentation, effectively
addressing the problem of insufficient labeled data under
specific working conditions prior to model training.

2) The proposed method extracts the EOS of the fault
signal, isolating fault characteristics with weak associ-
ations to working conditions as the training set for the
generative model. This approach effectively addresses
the domain shift issue between training and testing
data, enabling the generated data to efficiently meet

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on July 09,2024 at 12:55:34 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: NOVEL CROSS-DOMAIN DATA AUGMENTATION AND BEARING FAULT DIAGNOSIS METHOD 2516609

the requirements for training diagnostic models under
various working conditions.

3) The generated pseudo-data not only compensate for the
shortage of training data but also ensure data privacy
protection. Moreover, by combining the generated syn-
thetic fault data with the original normal data, the model
remains capable of training an effective fault diagnostic
model.

The remainder of this article is organized as follows.
Section II provides a brief overview of envelope extrac-
tion, order analysis, and the related research on VAEGAN.
Section III describes the detailed process of the proposed
method, including the structure of the diagnostic model and
the data preprocessing steps for converting the data into an
EOS. Section IV presents the experimental results of using
the proposed method on bearing fault signals and comparative
experiments. Section V concludes this article.

II. RELATED FUNDAMENTAL WORK

A. Envelope Extraction

The envelope spectrum is a frequency-domain signal anal-
ysis method that adeptly demodulates and extracts bearing
impact signals embedded in high-frequency natural vibrations.
Consequently, it enables the effective detection of fault fea-
tures in the frequency domain.

The process of envelope extraction involves several steps.
First, the Hilbert transform is applied to the input signal,
generating an analytical signal. Then, the modulus of the
analytical signal is calculated, yielding the envelope signal.
This envelope signal can be further analyzed by perform-
ing FFT, which yields the Hilbert envelope spectrum. The
resulting spectrum shows the amplitude of the envelope
signal as a function of frequency. The envelope spectrum
is a powerful tool for detecting vibration and shock in a
signal.

If the input signal is denoted by x(t), then its Hilbert
transform x̂(t) can be computed as follows:

x̂(t) =
1
π

∫
+∞

−∞

x(t − τ)

τ
dτ = x(t) ·

1
π

. (1)

In (1), the output of the signal after passing through a
series of orthogonal filters is represented. To further process
this signal, an analytic signal can be constructed, which is
a complex signal derived from the original real signal. The
purpose of constructing the analytic signal is to obtain a
representation of the signal in the complex domain. To achieve
this, the analytic signal can be expressed as a combination of
the original signal and its Hilbert transform, which is obtained
by shifting the phase of the Fourier transform of the signal by
−π /2. Mathematically, the analytic signal can be expressed as
follows:

x̃(t) = x(t) + j x̂(t) = A(t)e jϕ(t) (2)

where x(t) is the real part of the signal, x̂(t) is its imaginary
part, and j is the imaginary unit. A(t) of the signal is the
Hilbert envelope of x(t). The envelope spectrum is obtained
by doing Fourier transform on this A(t).

Diverging from conventional spectra, the amplitude of the
fault characteristic frequency stands out conspicuously in the
envelope spectrogram, facilitating more straightforward iden-
tification. Consequently, envelope spectrum analysis proves to
be more apt for extracting fault characteristics when compared
with traditional spectrum analysis.

B. Order Analysis

Order analysis [25] is a crucial method for dealing with
rotational speed and order. The order, which is primarily
relevant to rotating machinery, represents the number of times
a rotating part completes a full rotation in a specific time
frame. The order is a multiple of the rotational speed or
rotational frequency and remains constant for the rotational
speed. The actual speed, which is independent of the axis,
is a multiple or fraction of the speed of the reference axis.
In general, the vibration and noise response of the structure
appear at multiples or fractions of the rotational speed, known
as orders.

In real industrial production equipment, the rotational speed
of the machinery fluctuates to some extent rather than remain-
ing constant. This fluctuation causes a change in the rotation
frequency, and consequently, the fault characteristic frequency
of the bearing also changes. At this point, a conventional
Fourier spectrum analysis in steady-state conditions is inef-
fective. To overcome the limitations of conventional FFT and
other methods in fault diagnosis of variable speed rotating
machinery, scholars have developed the order analysis method,
also referred to as the order-tracking method.

The key to order-tracking technology is to sample the
constant angle of the reference axis and perform Fourier
transform on the angle-domain stationary waveform to obtain
the frequency spectrum. This spectrum reflects the amplitude
and frequency distribution of different orders of vibration
in the bearing. Since rolling bearings operate at different
speeds and loads under different working conditions, the
spectrum under various working conditions cannot corre-
spond. However, the corresponding relationship between order
spectra is relatively accurate. By resampling the sampling
signals at equal time intervals, the software transforms them
into equiangular spaced sampling signals, enabling one-to-
one correspondence of spectral lines under different working
conditions.

The relationship among order, frequency, and speed can be
expressed as follows:

O = 60 f/n (3)

where O is the order of the measured object, which is a
unitless quantity; f is the frequency of the measured object
in hertz (Hz); and n is the speed of the motor in revolutions
per minute (RPM).

C. Generative Model
As a pivotal category within AI models, generative models

receive training samples adhering to the distribution praw.
They acquire the ability to emulate this data distribution and
generate a probabilistic model, denoted as pmodel, allowing for
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the production of data samples resembling the training set for
subsequent utilization. Notably, GANs and VAEs stand out as
the two primary generative models in this context.

GAN [26] is comprised of a pair of neural networks,
a discriminator (D) and a generator (G), which are based
on statistics and game theory to generate data samples. The
primary goal of GAN is to input random noise (z) into G to
generate data, with the data generated by G being referred to
as pseudo-samples. Subsequently, the fake and real samples
are inputted to D simultaneously to distinguish between them.
The purpose of D is to identify fake samples from real samples
accurately, while G aims to generate data similar to the original
data. Therefore, D and G compete against each other to achieve
their goals. The ultimate objective of the GAN model is to
make the accuracy rate of G distinguish between fake and
real samples 0.5, which ensures that the fake samples appear
genuine.

GAN aims to let the generator generate enough samples to
fool the discriminator. From a statistical point of view, assume
that the generated pseudo-samples and real samples have the
same data distribution; that is, the generated samples and real
samples have the same probability density function, that is,
pG(x) = pdata(x). The purpose of training GAN is also to
meet this requirement. The loss function of GAN comes from
the cross-entropy loss function of the two classifications

L = −
1
Ni

[
yi log pi + (1 − yi ) log(1 − pi )

]
. (4)

The loss function of the discriminator is divided into two
parts; one part is to discriminate the real sample as 1, and
the other part is to discriminate the fake sample as 0, so the
optimization goal of the discriminator is to maximize the
sum of these two items; using V (G, D), the optimization
objective is

V (G, D) = Ex∼pdata(x) log(D(x)) + Ez∼pz(z) log(1 − D(x))

(5)
D∗

G = arg max
D

V (G, D). (6)

The purpose of the generator is to compete with the dis-
criminator and aims at making (5) as small as possible. The
generator G∗ can be expressed as follows:

G∗
= arg min

G
V

(
G, D∗

G

)
. (7)

Regarding VAE, it innovates upon the foundation of AEs
by incorporating variational inference theory. This involves
constraining the distribution q of learned latent variables
z to approximate a predefined prior distribution p, typ-
ically a standard normal distribution. Thus, beyond the
conventional reconstruction loss L(x, x̂), VAE introduces the
Kullback–Leibler (K–L) divergence loss to ensure a more
uniform distribution of latent variables in the latent space

L = L(x, x̂) +

∑
j

KL(q j (z|x)||p(z)). (8)

VAE achieves enhanced robustness of the decoder to noise
by introducing Gaussian noise to the results of the encoder.
Simultaneously, it employs K–L loss for regularization of the

Fig. 1. Structure of VAEGAN.

encoder, aiming to drive the mean of the encoded distribution
toward zero. In addition, the encoder outputs variance to
modulate the intensity of the noise, imparting a certain level
of randomness and variability to the decoder’s output. This
approach facilitates the learning of more generalized results.

Hence, through adversarial learning, GANs iteratively
strengthen sample generation, achieving higher quality out-
puts. Nevertheless, their training may be vulnerable to
challenges, such as mode collapse and instability. In contrast,
VAEs, by constraining latent variables within a prior distribu-
tion, imbue the latent space with enhanced continuity, thereby
facilitating interpolation within latent representations.

Fig. 1 shows the VAEGAN model, which integrates VAE
onto the foundation of GAN to enhance training stability. The
two models share a common decoder, amalgamating the conti-
nuity from VAE and the generative capabilities of GAN in the
latent space. This integration allows for semantic-meaningful
interpolation within the latent space. Achieving a fine equilib-
rium between VAE and GAN, the model excels in producing
samples that exhibit superior qualities in terms of quality,
diversity, and control over the latent space.

III. PROCEDURE OF THE PROPOSED METHOD

This section illustrates the proposed envelope-order-
spectrum-based method for VAEGAN data generation
(EOS-VAEGAN).

A. Overall Process
This section provides an overview of the proposed method,

which involves utilizing the EOS signals as the input of
VAEGAN to generate samples. Assume that there are multiple
sets of data in different working conditions. One set of data
have all faulty data, but the other set of data have only
normal data. The data from the first working condition undergo
analysis and processing to obtain the EOS. This EOS is then
used as the input for the VAEGAN network, which generates
the pseudo-EOS. Use the generated pseudo-EOS and the EOS
of the normal data under the second working condition to
train a network and finally use the data of the second working
condition to input the final network to test the feasibility of
the network. The flowchart of the whole algorithm is shown
in Fig. 2.

B. Envelope Order Spectrum

For the original data, initial preprocessing is conducted.
Subsequently, Hilbert transformation based on (1) and (2) is
applied, followed by FFT transformation, to obtain the signal’s
envelope spectrum. Subsequently, the frequency of the enve-
lope spectrum signal is linearly interpolated and divided by the
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Fig. 2. Flowchart of the proposed algorithm.

Fig. 3. Structure of the enhanced VAEGAN model.

rotational speed [see (3)] to obtain the order, resulting in the
EOS, which will serve as the real input for subsequent model
generation. In this process, the envelope spectrum processing
transforms the signal from the time domain to the frequency
domain, effectively demodulating the signal and extracting
the fault characteristics, making the fault information more
significant and less likely to be lost. Furthermore, when
conducting order analysis on the envelope spectrum signal,
due to the minimal impact of load variation on the signal, we
focus primarily on the differences in speed between signals
from different working conditions. Under varying speeds,
the fault characteristic frequency of the collected signals is
positively correlated with the speed. We perform order analysis
based on (3), which essentially conducts analysis processing
in the angular domain, to reduce the differences caused by
speed variations, aligning the envelope spectra from different
speeds. Therefore, after extracting the EOS from signals under
different working conditions, not only have we achieved some
degree of fault feature extraction, but we have also reduced the
differences caused by speed changes, to some extent extracting
domain-independent fault feature components.

C. Enhanced VAEGAN

The enhanced VAEGAN model structure, as illustrated
in Fig. 3, is composed of three components: an encoder,
a decoder (which also serves as a generator), and a discrim-
inator. During the forward propagation process, the envelop
order spectrum data X of the original input are processed by
the encoder to obtain µ and σ . Subsequently, the encoding
result Z is computed based on the following equation:

Z = µ + e
σ/2 · ε′. (9)

Following this, a portion of random noise data ε is sam-
pled from a standard normal distribution. This noise data,
along with Z , are separately fed into the decoder, result-
ing in the generated envelop order spectrum X̃ and the
reconstructed envelop order spectrum X̂ . Furthermore, X̂ , X̃ ,
and X are individually input into the discriminator, yielding

discrimination results (Ŷ , Ỹ , Y ) and feature extraction results
(X̂ f , X̃ f , X f ).

While training the model, an adversarial approach is still
indispensable. Consequently, for each epoch, it is imperative
to initially fix the parameters of both the encoder and decoder
and then proceed to update the parameters of the discriminator.
During the training of the discriminator, the loss function is
defined, as illustrated in the following equation:

Ldis = LCE(Y, 1) + LCE(Ỹ , 0) + α · LCE(Ŷ , 0) (10)

where LCE denotes the cross-entropy loss, and 0 and 1
represent the all-zero and all-one vectors, respectively.

Following the parameter update of the discriminator, its
parameters are fixed for the subsequent training of the encoder
and decoder, i.e., the VAE portion. The training loss function
for this section is depicted in (15), comprising three main com-
ponents. Equation (11) represents the generative adversarial
loss, employing the discriminator to adversarial train the gen-
eration of data to closely resemble ground truth. Equation (12)
signifies the generative matching loss, ensuring alignment
between generated data and ground-truth data through the
discriminator’s outcomes. Equation (14) corresponds to the
K–L divergence loss, aiming to bring the distribution of
encoded data as close as possible to a normal distribution

LGD = LCE
(
Ỹ , 1

)
(11)

LGrec =
β

N

(
γ · MSE

(
X, X̂

)
+ MSE

(
X f , X̂ f

))
(12)

MSE(X, Y ) =
1

m · n

m∑
i=1

n∑
j=1

(
X i j − Yi j

)2

(13)

LKL = −
1
2

N∑
i=1

(
1 + σ i − µ2

i − eσ i
)

(14)

LVAE = ω1 · LKL + ω2 · LGD + ω3 · LGrec. (15)

In this context, an additional feature extraction component
has been incorporated into the design of the last layer of the
discriminator, aiming to perform more than just data classifica-
tion. The purpose of this operation is to compute the squared
difference between the generated EOS data in the discrimi-
nator’s feature space and the real EOS data. Consequently,
the generator’s matching loss encompasses both the matching
loss based on the discriminator’s classification results and the
discriminator’s feature matching loss. By minimizing this loss,
our objective is for the feature distribution of the generated
data in the discriminator’s feature space to closely resemble
the feature distribution of real data. This contributes to the
generator producing more authentic EOS data.

Ultimately, the loss function for the VAE component is
the weighted sum of three individual losses. In (10)–(15),
parameters ω1, ω2, and ω3 serve as hyperparameters, allowing
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TABLE I
CNN PARAMETERS SETUP

for flexible adjustment of the weights assigned to different loss
components.

D. CNNs Parameters Setup

After obtaining the generated data, the dataset with missing
values is enhanced. To assess the effectiveness of the aug-
mented dataset, a basic CNN model can be employed as a
classification model. The model is trained using the generated
data, while the original authentic data serve as the test set
to evaluate the quality of generating data across different
operating conditions. The network structure parameters of the
CNN model are presented in Table I.

E. Algorithmic Pseudocode

A pseudocode for the proposed cross-domain fault diagnosis
algorithm has been developed. First, the data from each
operating condition are collected. Subsequently, in the scenario
where fault data are abundant for one operating condition
(source domain) and scarce for another (target domain), cross-
domain data augmentation and fault diagnosis are conducted.
Specifically, the data from the source domain are preprocessed
to obtain the EOS of the fault signals for that operating
condition. Following this, an enhanced VAEGAN model is
trained using these EOS data as a training set. The trained
model is then utilized to generate synthetic data for the source
domain. Subsequently, the generated synthetic data, along with
the limited real data from the target domain, are combined to
form a training set for a fault classification model of the target
domain.

Our experiment purpose is to effectively validate the out-
comes of cross-domain data augmentation and fault diagnosis.
Deliberately, abundant data in both the source and target
domains were opted for. However, it is essential to note that the
fault data from the target domain are exclusively reserved for
use as a test set. This strategic choice is made to assess the
effectiveness of cross-domain fault diagnosis. Consequently,

Algorithm 1 Cross-Domain Fault Diagnosis Algorithm
I. Obtain data for each working condition
II. Data preprocessing

Perform the envelope order for the data (N1, N2, . . ., I1, I2,
. . ., B1, B2, . . ., O1, O2, . . .,) of each working condition (C =

1,2,3,. . . ),
Perform linear interpolation on the obtained data of various

operating conditions, and set the length to 150.
III. Data generation

Select data from one domain as the source domain and data
from another domain as the target domain,

Source domain data SI,B,O (data of three fault types) and
random noise input GAN are trained.
For any epoch, j = 1, 2, 3, . . . , n,

Ldis = LC E (Y, 1) + LC E (Ỹ , 0) + α · LC E (Ŷ , 0)

LV AE = ω1 · L K L + ω2 · LG D + ω3 · LGrec

IV. Fault classification
Input random noise into VAEGAN to generate 3 types of

faults, with a data volume of 3 × 460 × 150,
Aggregate the normal data of the target domain and the

generated data to form a complete data 4 × 460 × 150,
Use this complete data (Nreal2, Ifake1, Bfake1, Ofake1) as the

training data for training the CNN model;
Take the data T (Nreal2, Ireal2, Breal2, Oreal2) of the target

domain as the test set.

TABLE II
DATASET’S WORKING CONDITIONS

the target domain is still considered to lack sufficient training
data for fault scenarios.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

A. Dataset Preparation

This section provides an overview of the data preprocessing
steps employed for input into the neural network. In our
experimental setup, the publicly available dataset from Case
Western Reserve University (CWRU) was utilized. To obtain
the subsamples for our VAEGAN input, preprocessing of the
dataset was undertaken. The sampling frequency is 12k, and
the fault data in the file are 10-s long. The list of subdatasets
used is provided in Table II.
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TABLE III
EXPERIMENTAL DATA DIVISION

TABLE IV
EXPERIMENTAL PARAMETER DESIGN

The first step involves partitioning the entire dataset into
multiple subsamples, and each subsignal is defined with a
length of 10 000 data points. Within the dataset files, a sub-
stantial volume of data pertains to the normal state of the
bearing. The data step size for normal bearings is set at 500,
whereas for faulty bearings, it is 240. This results in a total
of 620 groups of normal data and 460 groups of fault data.

1) Envelope spectrum and order analysis are performed on
each set of data with a length of 10 000, resulting in an
EOS with a length of 5000.

2) By calculating the fault frequency of the bearing and
converting it into the fault order, it is determined that
the fault order of the inner ring fault, outer ring fault,
and rolling element is between 2.5 and 8.

3) The EOS with a data length of 5000 is interpolated to
the fault order range using linear interpolation, resulting
in a final data length of 150.

B. Experimental Dataset Group Division

During the experiment, the data from working condition
1 were divided into three parts: inner ring fault, rolling element
fault, and outer ring fault. These three sets of data were used
as real sample inputs for VAEGAN to generate corresponding
synthetic fault data. For working condition 2, only normal
data were used for training, obtained after preprocessing the
data. The data length for the three types of faults in working
condition 1 was 3 × 460 × 150, while the length of normal
data for working condition 2 was 620 × 150, and the fault
data length was 3 × 460 × 150. Among these, 460 groups of
normal data were used for training and 160 groups for testing.
The experiment was conducted with four health states of the
bearing, including normal, inner ring failure, rolling element
failure, and outer ring failure. The data, initially assigned
numbers 0, 1, 2, and 3 according to the load, represented four
unique working conditions, each characterized by different
speed and load parameters. These subsets were subsequently
renumbered 1, 2, 3, and 4 based on the associated load, with
each new number denoting a specific combination of speed

Fig. 4. t-SNE feature dimensionality reduction plot of generated data.

Fig. 5. Six sets of experimental results of four different working conditions.

and load. This resulted in a total of six groups, as shown in
Table III.

C. Experimental Results and Discussion

In this experiment, the learning rate, training batch, and
other experimental parameters involved are shown in Table IV.

During the experiment, the data t-SNE feature dimension-
ality reduction map after VAEGAN was generated, as shown
in Fig. 4. It is clearly classified into four groups because of
four kinds of fault.

Consistent results across multiple experiments were noted,
and the result of one of these experiments was selected for pre-
sentation, as illustrated in Fig. 5, with the respective accuracies
of 92.81%, 86.72%, 92.34%, 86.88%, 93.44%, and 93.28%.
The data in the experiment were in four working conditions
and six migrations, respectively. From Fig. 5, during the
migration process, the average accuracy was basically over
90%, which indicates that the proposed method is indeed
effective.

In order to reflect the superiority of the proposed method,
we proceeded to compare the approach outlined in this article
with the FFT spectrum-based method. In order to reflect
the single variable of the experiment, the dimensionality of
the data was maintained throughout the preprocessing steps.
Following the FFT transformation, the fault characteristic
frequency was determined and confirmed. In this context, data
within the frequency range of 20–200 Hz were selected and
interpolated linearly to yield a dataset of 150 points.

As depicted in Fig. 6, it is evident that, when consid-
ering FFT-VAEGAN as the control experiment, its multiple
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Fig. 6. Results of the baseline.

TABLE V
MULTIPLE SETS’ RESULTS OF EXPERIMENTAL COMPARISONS

TABLE VI
COMPARISON OF EOS-VAEGAN, MAML, DAN, AND SNN

sets of experimental results hover around 50%, significantly
inferior to the performance of EOS-VAEGAN. This outcome
further corroborates the effectiveness of the EOS in extracting
domain-independent fault characteristics and, consequently,
the efficacy of our proposed methodology.

Then, we maintained the structure of the fault diagnosis
model and varied the data generation approach, conducting
multiple sets of experimental comparisons, as illustrated in
Table V.

Through comparison with experiments using other methods,
it is evident that the EOS can effectively reduce the domain
difference between different working conditions and narrow
the data distribution of the two domains. In contrast, the
Fourier spectrum is significantly influenced by the equipment’s
working conditions.

To further validate the effectiveness and reliability of
the model, additional reproducibility experiments were
conducted. The mean and variance of multiple experiment
results were computed, and comparisons were made
with several algorithms for small-sample fault diagnosis,
including model-agnostic meta-learning (MAML), domain
adaptation network (DAN), and Siamese neural network
(SNN) algorithms. The comparative results are presented in

Table VI. The results from the table clearly demonstrate that
our proposed EOS-VAEGAN method outperforms in terms
of both average performance and reliability.

V. CONCLUSION

This article proposes an enhanced VAEGAN data generation
method based on the EOS that spans the data from one
working condition to another, ensuring data privacy while
providing diagnostic guidelines for healthy conditions. The
method effectively addresses the challenge of insufficient
labeled training data under new working conditions, achiev-
ing cross-domain data augmentation and fault diagnosis, all
while safeguarding data privacy. Currently, using the data
to create the EOS involves extracting characteristics that are
independent of work condition. These characteristics are then
used to provide pseudo-features to equipment under other
working conditions, which can be tested using its own unique
characteristics. Through comparative experiments, the average
accuracy of the six migration experiments reached 94.83%.
The feasibility of this method has been verified, fully utilizing
the information in the data.

Despite achieving satisfactory results, the current appli-
cation focus is on bearings; thus, we have gained an
understanding of the failure frequency of bearings. Subse-
quently, further research will be conducted to apply this
technology to other industrial equipment and components,
such as pumps, reducers, and gearbox.
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