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IoT Motion Tracking System for Workout
Performance Evaluation: A Case

Study on Dumbbell
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Abstract—An intelligent sports training system based on
Internet of Things (IoT) technology is proposed to build a
low-cost, easy-to-use home exercise guidance solution, which
can provide reliable exercise guidance when gymnasiums are
inaccessible for users. The proposed intelligent system includes
an inertial measurement microelectromechanical system with
Bluetooth low-energy data transmission technology, a smart
dumbbell with an acceleration sensor, an application on the
smartphone terminal, and a computing central server in the
clouds. Two-loop Kalman filters, dynamic motion segmentation
method, and neural network are developed to demonstrate and
evaluate the user’s dumbbell exercise modes. Six dumbbell exer-
cise postures and 10 exercise cycles for eight participants are
collected for system validation in the experimental study. The
experimental results demonstrate that the proposed system can
effectively and accurately segment multiple types of dumbbell
movements (98.9% accuracy), recognize movements with high
reliability (98.3% accuracy), and distinguish standard and non-
standard movements (89% accuracy). Finally, this system with
an intelligent algorithm software and hardware can be expanded
to other similar types of sporting excises.
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I. INTRODUCTION

MEDICAL research has shown that physical exercise can
help maintain physical health, reduce the risk of car-

diovascular disease, obesity, stroke, and cancer, and improve
the musculoskeletal health and stress regulation [1] as well
as maintain mental health and reduce the risk of mental ill-
ness [2]. In July 2021, China launched the National Fitness
Plan (2021-2025), which mentions “Implementing the youth
physical activity promotion plan, promoting the youth sports’
health package’ project, carrying out sports interventions for
youth myopia, obesity, and other problems,” and attaching
importance to providing intelligent services for national fit-
ness,” developing timely information dissemination, convenient
services access, and an efficient information feedback system
with a national fitness wisdom service mechanism. Fitness
wisdom service requires the collection of information obtained
from various sensors for automatic motion detection and anal-
ysis. Athletically identifying and analyzing sports movements
is a remarkable direction in fitness wisdom services.

Many researchers have now researched human motion
recognition [3], focusing on human motion behavior changes
and fall monitoring to achieve intelligent medical rehabilita-
tion and reduce reliance on manual labor [4]. For example,
Zhou et al. [5] studied a neural network (NN)-based approach
for human activity recognition. Arsenault and Whitehead [6]
examined gesture recognition algorithms that use an iner-
tial sensor worn on the forearm and this recognition algo-
rithms use the sensor’s quaternion orientation in either a
Hidden Markov Model or Markov Chain based approach.
Al-Hammadi et al. [7] propose an efficient system for auto-
matic hand gesture recognition based on deep learning. The
proposed system is based on a convolutional neural network
(CNN) and employs a transfer learning of 3D CNN for
hand gesture recognition. Panella and Altilio [8] proposed
a smartphone-based application using machine learning for
gesture recognition which using feature extraction and tem-
plate matching via hu image moments to recognize gestures.
Ayata et al. [9] use a wearable device integrated with galvanic
skin response (GSR) and photo plethysmography (PPG) phys-
iological sensors to solve the emotion recognition problem.

1558-4127 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on July 09,2024 at 12:59:26 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-0460-4592
https://orcid.org/0000-0001-8457-3225
https://orcid.org/0000-0002-3173-0861
https://orcid.org/0000-0001-6394-5181
https://orcid.org/0000-0002-3224-0063


SUN et al.: IoT MOTION TRACKING SYSTEM FOR WORKOUT PERFORMANCE EVALUATION 799

Mortazavi et al. [10] built a game that utilizes wearable
sensors to monitor the gamer to prevent sedentary behavior in
childhood/adult obesity. Smerdov et al. [11] combined various
sensors, including inertial sensors, to monitor the fatigue state of
e-sports athletes, simultaneously preventing long-time athletic
work fatigue. The fatigue of athletes is prevented by long hours
of athletic work while aiding athletes in athletic decision-
making. Likewise, motion analysis is required for fitness smart
services. Dizon-Paradis et al. [12] proposed a flexible, re-
configurable human body movement and health monitoring
platform, called “Pasteables”. Huang and Bai [13] studied the
intelligent sports prediction analysis systems based on particle
swarm optimization algorithm. For example, swimming postures
recognition and analysis has received the attention of many
researchers. Ganzevles et al. [14] investigated the application of
three-axis acceleration sensors in swimming motion monitoring
and recognition. Wang et al. [15] studied multiposition human
swimming posture monitoring based on multisensor fusion for
achieving accurate guidance during exercise. Dadashi et al. [16]
studied wearable sensors regarding mechanical monitoring of
swimming to detect the two different motions of freestyle and
breaststroke. Additionally, Yoga care is also investigated by
Yoga-hand mudra (hand gestures) identification [17]. The YOGI
dataset has been developed which include 10 Yoga postures with
around 400-900 images of each pose and contain 5 mudras for
identification of mudras postures. Therefore, more and more
sport exercises are combined with the state-of-art artificial
intelligence algorithm to make them more smart and more
efficient.

Although human motion recognition with wearable devices
has been widely studied [3], all current devices have their
limitations, mainly, the classification of executive motions or
the accuracy analysis of actions, and few studies integrate
the two aspects. Moreover, many studies do not involve the
accurate motion segmentation of the sensor’s data stream. The
goal of intelligent sports training is the same as telemedicine,
connecting the users beyond the gym and coaches. To make
intelligent fitness services meet the client’s requirements and
reduce the cost of devices, the sensor devices and IoT systems
require designed miniaturization and lightweight. Additionally,
the sensors embedded in the IoT systems need a simpler, faster,
and more functional algorithm. In 2014, Bulling et al. [18] pro-
vided a tutorial on traditional machine-learning methods for
human motion recognition based on wearable inertial sensors.
Afterward, Burns et al. [19] demonstrated that smartwatch
devices and supervised machine learning methods can eas-
ily monitor and evaluate the effective execution of shoulder
physical therapy home exercise programs. Based on wear-
able sensors, Kos and Umek [20] proposed a rehabilitation
training framework with equal emphasis on local and remote
diagnosis and treatment, which supports users to obtain feed-
back from local algorithms and timely attention of remote
diagnosis and treatment personnel in training. Additionally,
similar technologies have been introduced into fitness intelli-
gent services. Hsu et al. [21] proposed a wearable system,
which uses two wearable inertial sensing modules on ath-
letes’ wrists and ankles to collect motion signals, and then
designed a convolutional NN to extract inherent features from
the short-term Fourier transform spectrum of motion signals

and realizes effective motion recognition in a variety of dif-
ferent movements. Sha et al. [22] integrated the acceleration
sensor into the smart wristband to monitor and judge the accu-
racy of the recognized posture of table tennis. Ravi et al. [23]
combine the spectrum feature extraction method with deep
learning approach to build up an on-Node sensor data analyt-
ics method for wearable device motion recognition. Based on
the sensor data, segmentation of the data is required before
sending it to the motion analysis model [24] for motion seg-
mentation. An effective method of motion segmentation is to
set the time sliding window to segment the signal and intercept
the data through the preset fixed-length sliding window. For
example, the literature [25], [26] used the fixed-length sliding
window for motion segmentation. Another method is to real-
ize motion segmentation and anomaly detection through the
analysis of data flow according to the pseudo periodicity of
human motion behavior [27]. For complex situations involv-
ing multilimb movements, Hu et al. [28] cut and segmented
motions through different semantic feature motions through
intelligent semantic analysis. However, in the case of wearable
device sensors, segmentation is mostly based on the wave-
form pseudo periodic characteristics of the motion data stream.
Tang et al. [29] analyzed the peak and trough characteristics
of the pseudo periodic signal to segment the signal, which
is simple and effective. In the previous research [30], [31],
based on the wearable device Internet of Things (IoT) system,
the information on badminton movement was analyzed and
processed, which realized the effective motion classification
and greatly reduced the requirements of traditional motion
monitoring for precision equipment. Moreover, Lu et al. [32]
proposed a new AIoT (AI + IoT) paradigm for next-generation
foot-driven sports (soccer, football, and takraw) training and
talent selection. Therefore, wearable sensors and IoT technol-
ogy play an essential role in motion tracking system design,
especially for the intelligent sport training system.

As we all know, dumbbell exercise can stimulate muscles
well to achieve exercise effect, and it is more convenient
to do exercise, which is very suitable for professional and
non-professional daily training [33]. However, most people’s
movements are not standard when doing dumbbell exercises,
and the effect of exercise is very low, which is not conducive
to accurately grasping the exercise situation. Therefore, precise
standardized training for dumbbell exercise movements is very
necessary to be studied. Wearable sensors and IoT technology
play an important role in intelligent sport. The development of
artificial intelligence and the Internet of Things technology has
realized the digitalization and intelligence of many traditional
physical exercise projects, like dumbbell projects. Intelligent
dumbbells that combine artificial intelligence and Internet of
Things technology can effectively solve the above-mentioned
two problems: 1) non-standard movements; 2) Low efficient
workouts.

In this work, an intelligent dumbbell motion recognition
and evaluation system, which uses a low-power microproces-
sor sensor with low-power Bluetooth technology and cloud
technology, is proposed. This system demonstrates the possi-
bilities of next-generation IoT sports devices using IoT. The
techniques in this system can segment the signal for dumbbell
movement type, classify the movement, and judge whether
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Fig. 1. The proposed dumbbell data stream processing algorithm.

the movement is standard. First, a wireless sensor device is
developed and built into the dumbbell to collect inertial data.
Second, a smartphone mobile application, which can visualize
the experimental results, perform motion analysis, and upload
the data from the experiment to the cloud server, is designed.
Third, motion segmentation, motion classification accuracy,
and NN algorithm are implemented in the cloud computing
platform design. Fourth, a real case study is performed to
demonstrate the reliability and validity of the whole system,
including the software and hardware. It indicates that the over-
all system is capable of achieving effective automatic dumbbell
exercise training guidance.

The rest of this paper is organized as follows. Section II
gives the literature review. Section II introduces the hardware
intelligent workout system and the dumbbell case study exper-
iment setup. Section III presents the algorithms of the motion
segmentation and analysis. Section IV shows the experimental
study of the proposed system, and Section V summarizes this
work.

II. PROPOSED SYSTEM SCHEME

A. Intelligent Exercise System Workflow

The workflow of the system is shown in Fig. 1. The micro-
electromechanical system (MEMS) installed on the intelligent
dumbbell is used to collect motion data and communicate with
the host computer. In this paper, the microcomputer motor
system collects the motion data of the acceleration of upper

Fig. 2. Overview of MEMS data acquisition systems.

limb motion from six types of dumbbells. Through the two-
loop Kalman filter and dynamic segmentation method, the
dumbbell information is preprocessed, and motion segmenta-
tion is realized. After the motion segmentation is completed,
the segmentation results are uploaded to the terminal. In the
terminal, the time domain and frequency domain characteris-
tics of the motion signal segment are extracted and input into
the NN to realize motion classification and motion evolution
and guide the user to exercise effectively.

B. MEMS Data Acquisition System

1) Example of Wireless Inertial Measurement Sensing Unit
and Arrangement: Fig. 2 shows the initial design of the
wireless inertial measurement unit. It consists of a micro-
processor with a Bluetooth wireless communication module
and a MEMS motion-sensing chip (with three-axis accelerom-
eter) processor DA14583 (Dialog Semiconductor, Reading,
U.K.) with Bluetooth integrated low-power radio transceiver
platform. The MEMS system is built into the smart dumbbell.

The three-axis angular acceleration sensor is flatly attached
to the center of one end of the dumbbell rod to realize the
information acquisition of the dumbbell motion. When the
dumbbell is placed horizontally on the ground, the x-axis of
the inertial sensing should be vertical to the horizontal plane,
the y and z axes are parallel to the horizontal plane, and the
x and y axes form a plane parallel to the dumbbell piece, as
shown in Fig. 2(b).

2) Software Interaction System: Since the MEMS
DA14583 has limited computational power and the smart
terminal can provide more motion guidance to users, an intel-
ligent mobile motion application is designed. The function of
this application concludes the motion signal feature extraction
and motion analysis, intelligent decision-making, etc. Fig. 3
shows the technical implementation method. The whole
system consists of three parts: wearable smart Bluetooth
sensing device, mobile terminal and cloud server. The entire
system process is to use the raw motion data through the
wearable MEMS sensor and then transmit it to our intelligent
management cloud. After receiving the data, the cloud uses
artificial intelligence algorithms to evaluate their posture and
give real-time feedback. This mobile application uses the
Evothings framework, which is used to create IoT mobile
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Fig. 3. Technical implementation method.

development applications. The open-source framework is
based on the JavaScript programming language. The software
system consists of a low-power Bluetooth module, sensor
data display, and motion analysis module. The low-power
Bluetooth module is based on Evothings and Cordova
BLE plug-ins and enables low-power Bluetooth support for
Android, iOS, and Windows. A cloud backend system that
automatically uploads data to the cloud when mobile devices
receive it and is also built by our system. The Cordova HTTP
plug-ins are used to implement the upload and save functions.

C. Experimental Scheme

In this paper, six dumbbell movements are selected as the
experimental dumbbell movements for signal acquisition and
analysis, namely, single-arm row, single-arm stretch behind
the neck, curls, side planks, dumbbell bench press, and bench
flyer. These six motions are briefly introduced as follows:

1) Single-Arm Rowing: The upper body is tilted forward
and fixed, the abdomen is closed, the chest is raised, and the
waist is straight. During the exercise, the arm is close to one
side of the body and pulled up to the limited position of the
highest point, feeling the latissimus dorsi fully tightened. After
a short stay at the highest point for 2–4 s, it slowly falls to the
vertical position between the large arm and the ground, and
the elbow is slightly bent.

2) Single-Arm Neck Posterior Arm Flexion and Extension:
The right-hand holds the bell, palm forward, and straight above
the head. The left hand is held on the left wrist, and the right
upper arm is kept close to the right ear. No movement is made.
The dumbbell falls to the top of the left shoulder in an arc;
the lower it is, the better. Then, the bell is held and lifted with
the contraction force of the triceps brachii of the right arm.

3) Dumbbell Curl: The elbow joint is taken as the fulcrum
and bent upward. The forearm is rotated outward with the palm
facing upward and lifted to the highest point. The bicep brachii
are tightened, and movement is stopped for a while. The main
exercise part is the bicep brachii. The critical point of the
motion is that the forearm rotates outward, the palm is upward
during the bending lift, and the arm cannot be straightened
during the relaxation.

4) Side Lateral Raise: Both hands grip the dumbbells on
both sides of the body, elbows are slightly bent, and fist eyes
are forward. Both hands hold the bell simultaneously to both
sides of the lift so the upper arms can be parallel to the ground

and then slowly fall back to the original position in the same
way. The main exercise parts are for the deltoids. The key to
motion is not to fling during the side planks up to the upper
arms parallel to the ground.

5) Dumbbell Bench Press: Lying flat on the mat, the dumb-
bells are kept in front of the chest, pushed up, lowered to the
same height as the chest, and pushed up again to the original
position. The process is repeated. The exercise areas are the
pectoralis major, deltoids, and triceps. The critical points of
the movement are to avoid straightening the arms completely,
and the lowest point should be slightly above the chest.

6) Dumbbell Bench Flying Bird: The upper back and hips
touch the bench surface when lying on the bench and with firm
feet on land. The dumbbells of both arms naturally extend
directly above the shoulder joint, and the distance between
the hands is slightly less than the shoulder width. Two arms
holding the dumbbells fall to the side of the body slowly.
In falling, the angle between the elbows gradually decreases,
and the elbow joint forms an angle of 100◦–120◦ at the limit.
The pectoralis major muscle contracts and raises the dumbbell
along the original path. The rising route is “arc,” and the angle
between elbows increases gradually. The critical point of the
motion is that the shoulder, elbow, and wrist joints are in the
same plane during the whole motion.

The six motions are shown in Fig. 4. Experimental data are
collected from eight different participants. Before starting the
data collection, they are invited to pre-train under the guidance
of a professional physical fitness trainer until they fluently
complete the movements. Then, ten effective repetitions of
each movement are completed. Each individual’s actions are
collected consistently, and the duration of each action varies
from 1 s to 3 s depending on the motion and the participant’s
strength. The signals are obtained from the built-in MEMS
sensor of the dumbbell held in the right hand.

III. TWO-LOOP KALMAN FILTERING WITH

DYNAMIC MOTION SEGMENTATION

This Section mainly introduces the real-time microproces-
sor processing, low-arithmetic-power requirements, and simple
computation that can be used simultaneously for all six dumb-
bell motions. For achieving motion segmentation, measured
signal filtering and detrend are necessary. We have designed
a Kalman filtering algorithm for signal filtering and real-
time detrending and proposed a two-loop Kalman filtering
algorithm. The flow chart of the two-loop Kalman filtering
algorithm is shown in Fig. 1.

A. Datastream Filtering

Datastream filtering includes smoothing filtering and real-
time stripping of uninformative signals. Smoothing filtering
is to remove the influence of environmental noise and sensor
noise in sensor acquisition, and no-information signal real-
time stripping can reduce the influence of invalid information
on signal analysis. It also reduces the amount of data transfer
in the information transfer and improves analysis efficiency.

1) A Signal Smoothing Filtering Algorithm: Assuming that
the acceleration measurements obtained for each axis obey
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Fig. 4. The motion captures and their signals in the XYZ-axis.

a Gaussian probability distribution, for example, the x-axis
acceleration observed by the sensor at time t satisfies at

x ∼
N (̂at

x, σ
t
x), then all the data Xt = (ax, ay, az)

T observed by
the sensor at the time t obey a joint Gaussian probability dis-
tribution N(̂Xt

, Ct), and Ct is the covariance matrix of the
joint probability distribution at the time t. The expected ̂Xt is
the filtered data stream result, which is used for subsequent
analysis. To simplify the calculation, the first-order model is
used to deduce the state transition of the joint Gaussian dis-
tribution, that is, X

t+1 = F̂Xt = Zt+1 = HX
t+1

HT , in which
F, H are the state transition matrix and the observation matrix
respectively, which are the unit matrices; Zt+1 is the sensor
observation value according to the predicted time t + 1; X

t+1

is the a priori expectation of the joint probability distribution
at time t + 1 obtained from the joint probability distribution
at time t.

Assuming that the posterior joint probability density at
moment t is N(̂Xt

, Ct), the N(̂Xt+1
, Ct+1) procedure for deriv-

ing the posterior joint probability density at moment t+1 using
signal smoothing with Kalman filtering is divided into the
following steps.

1. The predicted joint probability density N(̂Xt+1
, Ct+1) at

moment t+1 is generated from the state transfer matrix
F and process noise variance matrix QC, where X

t+1 =
F̂Xt, and C

t+1 = FCtFT + QC.
2. Kalman gain K = C

t+1
HT/(HC

t+1
HT + RC) is calcu-

lated from the a priori results, where RC is the observed
noise variance matrix.

3. The difference between the observed and predicted
expected Zt+1 at time t+1 is calculated, and � =
Xt+1 − Zt+1.

4. The posterior joint probability density function
N(̂Xt+1

, Ct+1) is updated for moment t+1,
̂Xt+1 = X

t+1 + K�, and Ct+1 = (I − KH)C
t+1

.
5. The expectation of the a posteriori joint probability den-

sity N(̂Xt+1
, Ct+1) is recorded as the result after filtering

at moment t+1.
For the initial power-on acquired signal X0 = (a0

x, a0
y, a0

z )
T ,

̂X0 = X0, and the corresponding covariance matrix C0, the pro-
cess noise variance matrix QC, and observation noise variance
matrix RC are simultaneously generated.

2) Real-Time Stripping of Uninformed Signals: The real-
time stripping of the noninformation signal is to add an ellip-
tical gate in the iterative Step 5 mentioned in Section III-A.
to judge whether the sensor observation value at time t + 1
can still be regarded as the joint probability distribution
N(̂Xt

, Ct) from time t. If it can be regarded as the proba-
bility distribution N(̂Xt

, Ct) from time t, the result at time
t + 1 is not recorded. Normalized distance d is used to
describe the expected N(̂Xt

, Ct) difference between the mea-
sured value of the sensor at time t + 1 and the probability
distribution at t:

d =
(

Xt+1 − ̂Xt
)T

/Ct ×
(

Xt+1 − ̂Xt
)

(1)

Normalized distance d fits the t-distribution with 3 degrees
of freedom. Therefore, a 95% confidence interval is selected
as the elliptic threshold, that is, d < 12.83, the observation
at moment t+1 is not recorded, and the data stream filter-
ing iterative process with the addition of uninformative signal
stripping in real time is then modified from iteration Step 5
in the previous Section as follows:
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If d � �T/Ct×� > 12.83, then the expectation ̂Xt+1 of the
posterior joint probability density N(̂Xt+1

, Ct+1) is recorded
as the result after filtering at moment t+1; otherwise, it is not
recorded.

B. Data Stream Segmentation

The time required to complete a motion cycle varies greatly
because different people perform dissimilar motions, so the
fixed-length sliding window is unsuitable for motion extrac-
tion. For example, in the dumbbell reclining movement, the
cycle length of completing a single movement is as long as
3s, whereas the single dumbbell flying bird movement takes
only 1s. The difference in time length increases the difficulty
of obtaining an effective movement through a single-length
sliding window. Moreover, even if the same person makes the
same motion, the length of each exercise cycle cannot be the
same.

However, in the dumbbell movement, a single motion
always moves for dozens of cycles, so the data stream col-
lected by the sensor can be regarded as a pseudo-periodic data
stream. The pseudo-periodic data stream has some character-
istics [29]: 1) The data stream can be divided into multiple
waves with similar duration. 2) The shapes of the data streams
in adjacent waves are very similar. Therefore, the pseudo peri-
odic data stream division method can be used to segment the
data stream. Data stream segmentation includes two parts: the
first part is to obtain the detrended signal, and the second part
is to perform over-segmentation through the detrended signal.

1) Detrended Signal Acquisition Algorithm: To obtain the
mean value that can accompany the signal in real time,
N(̂Xt

m, Ct
m) is used to describe the Gaussian probability den-

sity function that is consistent with the mean value of the
gyroscope sensor over a short period at moment t. Similarly,
N(̂Xt

m, Ct
m) is updated using the same Kalman filtering method.

Process noise variance matrix QCm and observation noise vari-
ance matrix RCm are different from QC and RC above, scaling
up observation noise matrix QCm and scaling down process
noise matrix RCm, and enabling this loop Kalman filter to
extract the real-time mean.

Similarly, the expected ̂Xt
m of N(̂Xt

m, Ct
m) at time t is con-

sidered the real-time mean of the signal, and the detrended
signal can then be obtained by ̂Xt − ̂Xt

m.
2) Motion Segmentation Based on Pseudo Periodic

Features: The pseudo periodic signal of dumbbell motion is
segmented by shape features. Considering the different accel-
eration waveforms of six motions, the graphic segmentation
method is adopted [29]. The pseudo periodic data stream is
composed of bands with different time lengths and values. The
band starts and ends in the middle of the two peak points.
Therefore, the data flow can be divided into several segments
according to the peak point. Typically, the lower limit of the
peak is pre-specified in the application. For example, in the
x-axis acceleration data stream, if the value of the valley point
is usually greater than 0.1, then 0.1 can be used as a thresh-
old Vs. When the value of the detrending x-axis acceleration
exceeds 0.1, this value is the distinguishing peak value point
V that is used to produce signal segmentation. However, the

peak value may change with the development of the data flow.
Therefore, the exponential average of the peaks collected in
the past is used to maintain real-time updates:

Vs = αVs + (1 − α)V (2)

where α is set as 0.6 in this study. Considering the variation of
the stream data values, a detecting threshold is introduced to
activate peak value detection. The detecting threshold is set to
0.4Vs, the algorithm will detect the new peak value V when the
measured data is up than 0.4Vs. A suitable detecting thresh-
old can improve the flexibility of the algorithm. If detecting
threshold is too small that it may generate many ineffective
segmentations, whereas a larger detecting threshold leads to
segmentation disability. Therefore, optimal detecting thresh-
old is set to 0.4Vs empirically. Moreover, so that the x, y, and
z-axis criteria do not interfere with one another when look-
ing for peak or valley values, only the result of the axis with
the largest absolute value of peak (valley) values is used as a
criterion.

C. Motion Feature Extraction, Motion Classification, and
Motion Accuracy Evaluation

Once the motion segmentation is completed, the MEMS
system uploads the data segment information into the mobile
application of the user terminal. The motion type is analyzed
using an NN approach, and this step consists of two main parts,
namely, motion feature extraction and motion classification.

1) Motion Feature Extraction: Motion feature extraction is
divided into two parts, namely, time-domain signal features
and frequency domain signal features, and the extracted time-
domain signal features are shown in TABLE I above. Because
the time-domain statistical features are computed directly from
the raw accelerometer data captured in real time and are
often more intuitive and easier to interpret than other signal
representations.

Three frequency-domain features are extracted as a sup-
plement to the motion signal features. Given that the signal
length of each segmented motion signal segment is differ-
ent, before extracting the time-domain features of the signal,
each motion signal is linearly interpolated, the signal length
is unified to 200 data points, and then the interpolated sig-
nal is standardized to make its variance and mean value 1, 0.
Finally, the normalized signal is Fourier transformed to obtain
the spectrum F. To keep each feature on the same order of mag-
nitude, the spectrum coordinate f of Fourier transform is an
increasing sequence of 0–10. The three time-domain character-
istics are center of gravity frequency, mean square frequency,
and frequency variance. The corresponding discrete formula
is calculated as follows:

FC =
∑

f × F(f )
∑

F(f )
, (3)

MSF =
∑

f × F(f )2
∑

F(f )
, (4)

VF =
∑

(f − FC)2 × F(f )2
∑

F(f )
, (5)
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TABLE I
STATISTICS FEATURES IN TIME DOMAIN

In summary, each motion time series has 15 features, and
the signal collected by the sensor contains x, y, and z data, so
45 features are used for the subsequent NN motion analysis.

2) Motion Classification, Accuracy Evaluation Neural
Network: Considering that the network needs to be deployed
on mobile applications, the structure of the NN needs to be
relatively simple. Therefore, a simple network structure with
seven layers is used in this paper to implement motion clas-
sification and pose accuracy assessment. The structure of the
network is shown in Fig. 5, which contains two parts, namely,
motion classifier and pose discriminator, which is multiclassi-
fication network structures. In pose identification, the motion
pose is classified into three categories, namely, perfect, good,
and bad, so that the user can directly judge whether the pose
is standard by the motion pose accuracy assessment results,
and forming a report to summarize the exercise results is
convenient.

The detailed parameters of the network are shown in
TABLE II below.

To judge the accuracy of the motion pose, in this paper, the
dynamic time warping (DTW) [34] method is introduced to
score the segmented completed data segments and classify the
motion criteria levels in the following steps:

Fig. 5. Schematic diagram of the network structure.

TABLE II
NETWORK STRUCTURE DIAGRAM

1. Demeaning of x, y, and z-axis information for all data
segments is performed.

2. Two movement segments per movement are selected
as standard templates from the data collected by the
coaches.

3. For each motion segment, the DTW distance is calcu-
lated with the two standard template motion segments of
its corresponding motion, and the mean value of the two
DTWs is calculated as the motion scoring parameter.

4. According to the motion scoring parameters, a motion
scoring parameter < 3 means the accuracy of the motion
pose is perfect, 3 < motion scoring parameter < 6 means
good, and 6 < motion scoring parameter means to be
improved (bad). Finally, the label is generated.

Different weights are assigned to the sample classification
labels in the training, considering the uneven distribution of
classification labels in motion accuracy analysis. The higher
the proportion of labels is, the smaller the weight to avoid the
influence of label imbalance.

IV. ANALYSIS OF EXPERIMENTAL RESULTS

In this experimental analysis section, the two-loop Kalman
filtering with dynamic motion segmentation is implemented,
and the accuracy of motion segmentation is evaluated. In the
motion classification and accuracy analysis, comparisons are
made with the plain Bayesian, support vector machine (SVM),
and k-nearest neighbor (KNN) algorithms.

A. Signal Preprocessing Analysis

In this Section, the two-loop Kalman filtering algorithm
proposed in this paper is analyzed with the original signal
of the trainer performing the motion “single-arm rowing.”

Fig. 6 shows the comparison between the original signal
and the signal after data stream filtering. The original signal
data are smoother after data stream filtering, and the measure-
ment noise is well suppressed. A no-action time of about 3 s
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Fig. 6. The original data stream and the filtered data stream.

Fig. 7. The signal numerical filtering and real-time mean value.

after the completion of the second motion cycle is observed,
during which about 150 points of uninformative interference
data measured are directly removed when data stream filter-
ing is performed. This result shows that the first-loop Kalman
filtering can effectively separate the high-frequency signals,
and the main components of the motion obtained from the
separated sensor measurements. Moreover, the uninformative
signals are not counted in the information stream, reducing
the information storage requirements for the MEMS and the
overall system power consumption during user rest.

The second-loop Kalman filter is used to extract the real-
time mean value of the signal, and the results are shown in
Fig. 6. The dashed line is the real-time mean value gener-
ated by the second-permutation Kalman filter. The second-loop
Kalman filter can effectively extract the trend of the signal.
When the signal undergoes large fluctuations (rapid fluctu-
ations of the signal after the horizontal coordinate 900 in
Fig. 7), the second-loop Kalman filter can effectively track
and extract the fluctuating mean trend of the signal in time. It
can be combined with the subsequent pseudo-periodic feature
motion segmentation.

First- and second-loop Kalman filtering are combined to
obtain the filtered, de-invalidated information, and trended
temporal signals, as shown in Fig. 8. The peak value of the
signal extracted automatically by applying the peak identifi-
cation algorithm mentioned in the second part of Section III
is also plotted together. Moreover, the signal between each
peak value of the signal extracted according to this method
contains the information of the user performing one motion.
However, the peak (valley) value of the acceleration crite-
rion point occurs at the process point where the direction

Fig. 8. De-trend the peak of the signal.

Fig. 9. De-trending signal acquisition and motion segmentation.

of the dumbbell movement turns, which is the middle point
of the whole dumbbell movement cycle. To obtain the com-
plete dumbbell movement cycle, the actual splitting point is
the midpoint of the two adjacent criterion points.

B. Motion Segmentation Effect Analysis

In this Section, the original signal of the coach’s motion
“single-arm rowing” is also taken as an example to show the
effect of the two-loop Kalman filter motion segmentation algo-
rithm proposed in this paper. The segmentation of the motion
segmentation algorithm is obtained from the detrended signal,
but the motion signal is segmented based on the output result
of the first-loop Kalman filter. Fig. 9 shows the result of the
motion segment after segmentation. The motion segmentation
is effective.

TABLE III describes the motion segmentation. Except
that the red mark indicates that the motion segmentation is
inaccurate in the later manual verification, the additional iden-
tification part is the noise content, the black mark is the
effective motion segmentation, and the additional identifica-
tion part is one more motion in the test. The average accuracy
of overall segmentation is 98.33%.

C. Essential Experimental Details

In the previous subsection, 472 motion data segments are
divided. After manual processing and cleaning, 455 valid data
segments are retained and used as the dataset. In training, 60%
of the data is used for the model training, 20% is used as the
validation set for model parameter setting, and 20% is used
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TABLE III
MOTION SPLIT RECORD

TABLE IV
MOTION CLASSIFICATION ACCURACY

TABLE V
MOTION POSTURE ACCURACY SCORING

as the test set to verify the model results. In the validation
set, the learning rate of the final model is selected as 0.02,
and the dropout rate is 0.5, the optimizer is Adam optimizer,
the number of training iterations is 2000, and the size of the
minibatch is 41–40 to ensure that the complete training set is
traversed every 10 iterations.

D. Comparison and Analysis of Results

The classification and accuracy analysis of the motions are
compared with the Naive Bayesian (NB), SVM, and KNN
algorithms. The three methods are trained using the same
training set as NNs and tested using the same test set.

TABLE IV below shows the classification accuracy score
results of the three commonly used classification methods and
the NN method on the test set. The NN method achieves the
best accuracy in classification accuracy for all six motions.
Hence, the NN method can effectively perform the classifica-
tion counting of the motions.

TABLE IV shows the results of the three commonly used
classification methods and NN methods for motion pose
accuracy scoring on the test set, and NN achieves the best
results. The advantage is evident compared with the NB
method and SVM, indicating that the NN method has greater
generalizability for the same data set size.

TABLE V shows the results of the three commonly used
classification methods and NN methods for motion pose accu-
racy scoring on the test set, and NN achieves the best results.
The advantage is evident compared with the NB and SVM,

Fig. 10. Confusion matrix based on neural networks and other comparison
methods on the test set.

indicating that the NN method has greater generalizability for
the same data set size.

The confusion matrix of motion classification and motion
posture diagnosis is shown in Fig. 10. We established
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confusion matrices for motion category division and motion
accuracy description and compared our proposed NN algo-
rithm with conventional classification algorithms such as NB,
SVM, and KNN. The NB algorithm can handle both contin-
uous and categorical data, but it has a weakness in handling
nonlinear relationships. The SVM can be used for both classi-
fication and regressions, but it needs to select kernel functions
and hyperparameters. The KNN algorithm can work well with
small datasets but it is sensitive to irrelevant features which
makes the cost of computational power. For the classification
of motion categories, we used the previous six action cate-
gories of M1-M6, and for the description of action accuracy,
we established three evaluation indicators: bad, good and per-
fect. It can be seen from Figure 10 that in the classification of
motion categories, the NN algorithm can achieve an accuracy
rate of 98.9%, while NB, SVM and KNN can only achieve
an accuracy rate of 96.7%, respectively. Similarly, in terms of
motion accuracy evaluation, the accuracy rate of NN can reach
89%, while NB, SVM and KNN are 59.3%, 69.2% and 86.8%
respectively. To sum up, the proposed NN algorithm is supe-
rior to the other three algorithms in terms of the classification
of action categories and the description of action accuracy.
The analysis of classification results shows that although the
NN used has a simple structure, it can effectively realize the
classification and analysis of motions. From the perspective of
pose analysis accuracy, the output results of the NN used in
the “Bad” category are relatively inaccurate, and 26% of the
“Bad” motion segments predicted by the network are good,
but the prediction of the “Perfect” category is very accurate.

V. CONCLUSION

This paper focuses on designing the experimental scheme,
data acquisition, and data processing algorithm using MEMS
technology in the smart dumbbell. The MEMS data acqui-
sition system enables motion segmentation and information
transmission. A mobile app on the user terminal recognizes
and analyzes the movements and uploads the data to the
cloud for summary analysis. The designed data flow filter-
ing and segmentation algorithms based on axial acceleration
signals from the MEMS sensor achieve signal smoothing,
detrend signal acquisition, and pseudo periodic motion seg-
mentation with high accuracy (98.8%). The proposed system
effectively classifies dumbbell motions and diagnoses postures,
demonstrating practical value. Future research will focus on
enhancing method robustness and extending it to various sports
beyond dumbbells.
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