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Abstract: Machinery degradation assessment can offer meaningful prognosis and health management
information. Although numerous machine prediction models based on artificial intelligence have
emerged in recent years, they still face a series of challenges: (1) Many models continue to rely on
manual feature extraction. (2) Deep learning models still struggle with long sequence prediction
tasks. (3) Health indicators are inefficient for remaining useful life (RUL) prediction with cross-
operational environments when dealing with high-dimensional datasets as inputs. This research
proposes a health indicator construction methodology based on a transformer self-attention transfer
network (TSTN). This methodology can directly deal with the high-dimensional raw dataset and
keep all the information without missing when the signals are taken as the input of the diagnosis
and prognosis model. First, we design an encoder with a long-term and short-term self-attention
mechanism to capture crucial time-varying information from a high-dimensional dataset. Second,
we propose an estimator that can map the embedding from the encoder output to the estimated
degradation trends. Then, we present a domain discriminator to extract invariant features from
different machine operating conditions. Case studies were carried out using the FEMTO-ST bearing
dataset, and the Monte Carlo method was employed for RUL prediction during the degradation
process. When compared to other established techniques such as the RNN-based RUL prediction
method, convolutional LSTM network, Bi-directional LSTM network with attention mechanism,
and the traditional RUL prediction method based on vibration frequency anomaly detection and
survival time ratio, our proposed TSTN method demonstrates superior RUL prediction accuracy
with a notable SCORE of 0.4017. These results underscore the significant advantages and potential of
the TSTN approach over other state-of-the-art techniques.

Keywords: feature extraction; prognostics; self-attention transfer network; high-dimensional data;
remaining useful life prediction

1. Introduction

Machine condition prognostics is the critical part of an intelligent health management
(PHM) system, which aims to predict a machine’s remaining useful life (RUL) based on con-
dition monitoring information [1]. The general PHM procedures include the construction
of health indicators (HIs) and RUL prediction. The HI is a crucial variable that indicates
the current machine health condition, and also it represents the information extracted from
sensor data and provides degradation trends for RUL prediction.

The HI construction process is called data fusion and has three categories: feature-
level, decision-level, and data-level fusion [2]. Feature-level fusion methods rely on prior
knowledge of degradation mechanisms and physical models. Ma [3] reported a multiple-
view feature fusion method for predicting the RUL of lithium-ion batteries (LiBs). Decision-
level techniques fuse high-level decisions based on individual sensor data and do not
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depend on raw-signal feature extraction. Lupea [4] developed a system utilizing features
from vibration signals to detect mounting defects on a rotating test rig, with the quadratic
SVM classifier emerging as the top performer Wei [5] proposed a decision-level data fusion
method to map a unique sensor signal onto reliable data to improve the capability of
the quality control system in additive manufacturing and RUL estimation for aircraft
engines. Data-level fusion methods find the embedding feature suitable for a task from
raw data. They can monitor the machine system state based on the requirements of an
effective aero-engine prognostic and also the monitoring task has strong versatility. Chen [6]
proposed an improved HI fusion method for generating a degradation tendency tracking
strategy to predict the gear’s RUL. Wang [7] extended the extreme learning machine to
an interpretable neural network structure, which can automatically localize informative
frequency bands and construct HI for machine condition monitoring. RUL prediction
reveals the remaining operating time before equipment requires maintenance. They can
be classified into four categories: physics model-based, statistical model-based, artificial
intelligence-based, and hybrid methods [8]. Many recent studies have focused on artificial
intelligence-based machine RUL prediction methods such as convolutional neural networks
(CNNs) [9], long short-term memory (LSTM) recurrent networks [10], and gated recurrent
(GRU) networks [11]. Recurrent neural networks (RNNs) have gradually become the most
popular of these methods. Many scholars have focused on LSTM recurrent networks and
GRU networks to address the vanishing gradient problem. Xiang [12] added an attention
mechanism to the basis of an ordered, updated LSTM network, which further improved
the robustness and accuracy of the LSTM network-based RUL prediction model.

Although these methods can achieve an effective machine prognostic, most artificial
intelligent-based models rely on manual feature extraction (HI construction). Manual
feature extraction inevitably leads to information loss, which has a negative influence
on prognostics. Several studies have focused on allowing neural networks to extract
features automatically from the original input, a procedure that can avoid input information
loss from manual feature extraction. In the fault diagnosis field, artificial intelligence-
based models exhibit excellent fault diagnosis performance with the original vibration
signal input [13]. Ambrożkiewicz [14] presented an intelligent approach to detect the
radial internal clearance values of rolling bearings by analyzing short-time intervals and
calculating selected indicators, later enhancing classification accuracy using Variational
Mode Decomposition (VMD). They can directly extract disguisable fault features from
unlabeled vibration signals [15]. These methods mainly utilize CNNs to realize automatic
feature extraction. Therefore, several researchers have attempted to utilize CNNs to extract
degradation features for predictive purposes. Xu [16] applied a dilated CNN to the field
of prognostics, used five convolutional layers to extract features from the original signal,
and combined them with a fully connected network to realize effective prognostics. Li [17]
proposed a multivariable machine predictive method based on a deep convolutional
network. The proposed method uses the time-window method to construct 2D data as
convolutional network input. Ren [18] built a spectrum principal energy vector from a
raw vibration signal as a CNN input for bearing prognostics. CNNs demonstrate a strong
capability in high-dimensional input situations but are not good at dealing with long-term
series prognostics tasks. RNNs can easily construct long-term relationships but cannot
directly utilize the abundant long-term information owing to their limited in-network
processing capacity. Thus, this study proposes building a network that can directly deal
with high-dimensional, long-term, time-series data for machine prognostics. The aim was
to establish the long-term degradation relationship for prognostics from a large amount of
raw data without relying on manual feature extraction and HI construction.

Another non-negligible defect of the existing prognostics methods is that all degra-
dation datasets satisfy independent and identically distributed conditions. Due to the
operating condition and fault type variation, a distribution discrepancy generally exists be-
tween degradation datasets (each degradation dataset is an independent domain), leading
to performance fluctuation in prognostics methods. Hadi [19] introduced two automated
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machine-learning models aimed at precisely identifying various ball-bearing faults. Using
the CWRU bearing faults dataset for evaluation, their study emphasized the potential
of AutoML techniques in IIoT applications, especially valuable for industries where un-
scheduled downtimes can be costly. Transfer learning (TL) is introduced to help artificial
intelligence-based prognostics methods extract domain-varied features and achieve effec-
tive outcomes under cross-operating conditions. TL can utilize the knowledge learned
in previous tasks for new tasks by removing the domain invariance feature [20], which
is widely used in fault-diagnosis tasks. In recent years, many researchers have focused
on TL application in the prognostics field to achieve effective cross-operating condition
prognostics. For example, Wen [21] utilized a domain adversarial neural network structure
to solve the crossing domain prognostic problem. Roberto [22] proposed a domain adver-
sarial LSTM neural network that achieved an effective aero-engine prognosis. Mao [23]
performed a transfer component analysis that sequentially adjusts the features of current
testing bearings from auxiliary bearings to enhance prognostics accuracy and numerical sta-
bility. This study introduces TL to extract the general representation of bearing degradation
data from different operating conditions and the final fault types to achieve prognostics in
cross-operating conditions. Figure 1 shows a general transfer learning algorithm for the
cross-operating conditions’ HIs.
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Transformer [24] is a popular multi-modal universal architecture neural network
architecture. The transformer utilizes a self-attention mechanism to capture the long-term
dependence (spatial dependence) information between input elements in a sequence. It
uses the full sequence input for each inference; therefore, it is less affected by the sequence
length than traditional methods (RNN and LSTM). This feature of the transformer network
is suitable for the prognostic task. Zhang [25] proposed a dual-aspect transformer network
to fuse the time steps and sensor information for long-time machine prognostic. Su [26]
proposed a bearing prognostic method consisting of a transformer and LSTM, achieving
effective RUL prediction. Thanks to the advantages of the transformer architecture in
processing long series and high-dimensional features, it has the potential to become a well-
data-driven prognostic tool. Therefore, the cross-domain prognostic based on a transformer
architecture is studied.

To address the limitations introduced by the above issues concerning feature extraction,
cross-operating conditions, and different data distributions, this study takes the FEMTO-ST
bearing dataset as an example to explore the degradation process based on a transformer-
based self-attention transfer learning network (TSTN). The method can automatically
construct an HI from high-dimensional feature inputs and realize long-term information
association to monitor machine conditions. The innovations and contributions of this study
are summarized as follows:
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(1) Development of TSTN for Machine Prognostics:

We have introduced the Transformer-Based Self-Attention Transfer Learning Network
(TSTN) as a dedicated solution for machine prognostics. TSTN leverages long-term, high-
dimensional spectrum vectors as its input and directly produces a linear Health Index (HI)
output, a numerical value ranging from 0 to 1. This HI value is straightforwardly compared
to a failure threshold of 1. The core transformer architecture within TSTN plays a pivotal
role in extracting critical features from extended time sequences.

(2) Incorporation of Long-term and Short-term Self-Attention Mechanisms:

TSTN incorporates both long-term and short-term self-attention mechanisms, em-
powering it to discern short-term and long-term fluctuations in machine conditions. By
analyzing historical high-dimensional feature data in conjunction with current information,
TSTN excels at identifying evolving machine states.

(3) Integration of Domain Adversarial Network (DAN) in TSTN:

To enhance TSTN’s robustness and versatility, we have integrated a Domain Adver-
sarial Network (DAN) within its architecture. DAN effectively minimizes data disparities
across various operational conditions, thus enabling TSTN to monitor machine states con-
sistently across different scenarios and environments. This integration significantly extends
TSTN’s applicability for cross-operation machine state monitoring.

The remainder of this paper is organized as follows. Section 2 introduces the pre-
liminaries of the proposed method. The principle of the proposed algorithm is presented
in Section 3. Section 4 describes the proposed model’s experimental study, and Section 5
summarizes this work.

2. The Related Work

This section reviews the basic architecture of the transformer network structure and
adversarial domain structure.

2.1. Transformer Network Structure

Vaswani proposed a transformer network structure [24]. This network is used to solve
the shortcomings of the sequential computation network; that is, the number of operations
required to relate signals from two arbitrary input positions increases with the distance
between positions. The critical part of the transformer is the self-attention layer, which
consists of two sub-parts: the multi-head attention layer and the feedforward network
(FFN). The structure of the self-attention layer is illustrated in Figure 2.

The critical operation of the self-attention layer is scaled dot-product attention (right
side of Figure 2).

Assuming that the input data X consists of n patches, the i− th patch is denoted as
xi, and the corresponding “query” (q ∈ R1×dmodel), “keys” (k ∈ R1×dmodel), and “values”
(v ∈ R1×dmodel) can be calculated through linear mapping (qi = WQ × xi

T , ki = WK × xi
T ,

vi = WV × xi
T).

In addition, WQ ∈ Rdmodel×dpatch , WK ∈ Rdmodel×dpatch , and WV ∈ Rdmodel×dpatch were
trainable variables.

To improve the learning capability of the self-attention layer, k, v, and q are linearly
projected h times, which is called the multi-head attention layer. For example, qi is decom-
posed into

[
qi,1, qi,2, · · · , qi,h

]
, and the operations of ki and vi are similar to those of qi.

j− th sub-parts of qi, ki, and vi are denoted as qi,j, ki,j, and vi,j, respectively. The scaled
dot-product attention operation is

Headi,j = att(qi,j, kdot,j, vi,j) , softmax

(
qi,jkdot,j

T

√
dk

)
vi,j, (1)
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where kdot,j refers to all ki,j that must be calculated via the scaled dot-product attention
operation. After the scaled dot-product attention operation, the output results of the
multi-head attention layer are

MultiHeadi = Concat(Head1, Head2, · · · , Headh)W
O, (2)

where WO ∈ Rdpatch×dmodel represents the learnable linear projection. To facilitate expression,
the operations (1) and (2) are summarized into one operation symbol SM(qi,j, kdot,j, vi,j).
FFN consists of one hidden layer, and the density of the hidden layer is denoted as ddiff;
the density of the output layer is dmodel.
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2.2. Domain Adversarial Network

An adversarial domain network (DAN) is an effective TL method that can extract
domain-invariant features [27], and its architecture is shown in Figure 3. The DAN in-
troduces adversarial learning to achieve domain adaptation. In addition to the standard
feed-forward feature extractor and label predictor, the DAN contains a domain classifier
that connects to the feature extractor via a gradient reversal layer. During backpropagation-
based training, the gradient reversal layer multiplies the gradient by a certain negative
constant. The training process must minimize label prediction and domain classification
losses. The feature distributions of all domains were similar to those of the domain classifier
and the gradient reversal layer.
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3. The Proposed TSTN
3.1. TSTN Structure

The proposed network structure for machine RUL prediction based on the transformer
and multiple-source domain adaptation is shown in Figure 4. The proposed network
consists of three subparts: an encoder, HI estimator, and a domain discriminator.
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The input data of this network is xt. When data xt ∈ R(m×n)×p are fed into the network
p, a learnable patch x0 is added in front of vector xt and multiplies this vector

√
p. The input

sequence is X ∈ R(1+m×n)×p. The learnable patch on the encoder output serves as the HI
representation, connecting the HI estimator and domain discriminator. Learnable patches
calculate self-attention with others to capture the long-term collected signal sequence’s
high-dimensional feature (spectrum) change. The encoder of the proposed TSTN consists



Sensors 2023, 23, 9190 7 of 17

of a local, long-term, and short-term self-attention layer and a feed-forward network. For
the ease of expression, Hinput ∈ R(1+m×n)×p and Houtput ∈ R(1+m×n)×p are denoted as
encoder input and output, respectively.

It is well known that the datasets collected from different operating conditions and
fault types are challenging in terms of satisfying the independent identically distribution
(IID) property. Hence, this proposed method introduces a domain discriminator with a
gradient reversal layer to make the HI representation distribution of different degradation
datasets similar. This method can realize prognostics under cross-operating conditions. The
encoder, HI estimator, and domain discriminator are introduced as follows. The detailed
network settings are listed in Figure 4. In the training process, the forward data flow is
plotted using blue arrows, and the backward gradient flow is plotted using orange arrows.
The functions LHI and Ld were added directly as L = LHI + Ld in the training process.
Figure 4 displays the parameter setting of the proposed TSTN methodology.

• Query–key–value computation. The encoder input Hinput consists of 1 + m × n
patches. The l − th patch collected in the s − th frame is Hinput denoted as hs,l ,
and the query, key, and value vectors are tindex computed by qs,l = WQ × hs,l

T ,
ks,l = WK × hs,l

T , and vs,l = WV × hs,l
T , respectively. Following the extended deriva-

tion in [28], denoting the s − th frame corresponding time is tindex, and the rotary
position embedding in the proposed method as follows:

qR
s,l =



q1
q2
q3
q4
...

qdmodel−1

qdmodel


⊗



cos tindexθ1
cos tindexθ1

cos lθ1
cos lθ1

...
cos lθp/4
cos lθp/4


+



q2
q1
q4
q3
...

qdmodel
qdmodel−1


⊗



− sin tindexθ1
sin tindexθ1
− sin lθ1
sin lθ1

...
− sin lθp/4
sin lθp/2


, (3)

The predefined parameter is Θ =
{

θj = 10000−4(j−1)/dmodel , j ∈ [1, 2, · · · , dmodel/4]
}

,

and the calculation operation of kR
s,l is similar to that in (3). Using this position embedding

method, the signal collected time information tindex and the spectrum location information
l of patch hs,l can be recognized using self-attention. The first learnable patch h0,0 needs
the use of the same method to generate qR

0,0, kR
0,0, and v0,0. Since the time-embedding

information offers the time auxiliary information, private over-fitting tindex will time a
random value governed by N(1, 0.003).

• Long-term, local, and short-term self-attention. The dimensions of the input data xt
are enormous. The number of calculations is large when self-attention is calculated for
each patch, thereby confusing the network. We propose three sub-self-attention parts
to allow the network to capture the degradation trend from the high-dimensional
spectrum: local, long-term, and short-term self-attention.

To trace the long-term trend of machine conditions, we compute it by comparing each
patch with all patches at the same spectrum location.

aR
s,l

(Long−term) = SM(qR
s,l ,
[

kR
0,0,
{

kR
i,l

}
i=1,··· ,m

]
, vs,l). (4)

To learn the spectrum information from each collected signal, local self-attention
operation only computes patches with the others collected simultaneously. The local
self-attention operation is

aR
s,l

(Local) = SM(qR
s,l ,
[

kR
0,0,
{

kR
s,i

}
i=1,··· ,n

]
, vs,l). (5)
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The rapid, short-term changes in the machine conditions can be computed as follows:

aR
s,l

(Short−term) = SM(qR
s,l ,
[

kR
0,0,
{

kR
i,j

}
i=1,··· ,s;j=1,··· ,n

]
, vs,l), (6)

where s denotes the first s frame on which we wish to focus. After calculating all patches
Hinput via a self-attention operation, the output is represented as A.

• Residual connection and layer normalization. After the self-attention computation,

the output of the attention layer is calculated via the B = LayerNorm
(

A + Hinput

)
residual connection [29] and layer normalization [30].

• FFN and layer normalization. The final layer of the encoder is the FFN and layer
normalization; that is, Houtput = LayerNorm(B + FFN(B)).

The feed-forward layer consists of an MLP with one hidden layer. The density of the
hidden layer is denoted by ddiff = 8 p, and the density of the output layer is denoted by p.
Notably, the activation function of the hidden layer is GeGLU [31], and the output layer has
no activation function. GeGLU introduced gates to modulate the linear projection, which
can control the information that is not conducive to HI estimation passed on to the encoder.

Subsequently, all operations in Hinput are encoder outputs. To combine the long-term,

local, and short-term self-attention into one encoder, B(Long−term) is fed back to calculate
the local self-attention instead of being passed to the FFN. Hence, the new QR, KR and V
are generated from B(Long−term) and fed into Equation (5) to calculate local self-attention.
The operation of short-term self-attention was similar to that of local self-attention.

• HI estimator. An MLP with one hidden layer was connected to the learnable patch of
the encoder output, and the MLP output was the HI estimated result eHI .

To indicate HI easily and intuitively, the training label is defined by the index results
from the normalized operating time t divided by the machine system operating time T,
labelHI,t = t/T. Assuming that G datasets are required in the training process, the loss
function Lg

HI from the g− th training dataset is the mean squared error of eHI,t and labelHI,t.
The naive average induces label imbalance because the length of the dataset varies. An
adaptive weighting scheme [32] is introduced to avoid the label imbalance problem, and
the formula is

LHI =
G

∑
g=1

exp(Lg
HI )Lg

HI

/ G

∑
g=1

exp(Lg
HI ). (7)

• Domain discriminator. The domain discriminator consisted of an MLP with one
hidden layer connected to the learnable patch of the encoder output. The number of
domain discriminators is equal to the number of degradation-process datasets. The
output of each domain discriminator was a 2D vector. The second and first elements
represent the current inputs sampled during the degradation process. The network
learns a domain-invariant HI representation if the domain discriminator cannot differ-
entiate the current input from the dataset.

Assuming that this network has G domain discriminators, the loss function Lg
D of a

single-domain discriminator g is based on cross-entropy loss. The same adaptive weighting
scheme was applied to make domain discriminators available. A gradient reversal layer is
inserted between the domain discriminator and the learnable patch of the encoder output.
In the forward process, the gradient reversal layer performs nothing; however, in the back-
ward process, the gradient is multiplied by a pre-specified negative constant −λ. The pre-
specified negative constant−λ is followed by−λ = −(2/(1 + exp(−10training_process))− 1)
in training, where training_process denotes the training progress linearly changing from
zero to one.

Table 1 shows the network structure parameter setting of TSTN.
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Table 1. Parameter setting of TSTN.

Encoder
Multi-Head dmodel ddiff Dropout rate

16 64 512 0.2

HI estimator (MLP)

Layer Dense Activation function number

Fully connected 32 GeGLU 1

Fully connected 1 GeGLU 1

Domain discriminator (MLP)

Layer Dense Activation function number

Fully connected 32 GeGLU
Equal to dataset number

Fully connected 2 Softmax

3.2. Data Pre-Processing

For the data pre-processing part, there are two sub-parts: signal collection and the
decomposition of patches. Figure 5 displays the data pre-processing input network.
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• Signal collection. The input of the proposed TSTN was a clip Xt ∈ Rm×512 con-
sisting of m frames with 512 spectrum features extracted from the measured vi-
bration signal. The frames were divided according to the time to obtain abun-
dant temporal information. The time-divided relationship follows tindex = τ ×[(

sin
(

m−1−index
m−1 × π − π

2

)
+ 1
)

/2
]
, index = (0, 1, 2, · · · , m − 2, m − 1), which

τ denotes the time required to collect data.
• Decomposition of patches. Each spectrum feature is decomposed into non-overlapping

patches with a size of p; that is, n = 512/p. These patches are then flattened into a
vector X ∈ R(m×n)×p as the network input.

In summary, the data preprocessing process can be divided into the following seven steps:

(1) Index collection: Assuming that the total length of the time series is 20 s, set parameter
m = 5. The indexes for collecting data are 0, 5, 10, 15, and 20;

(2) Calculation of times: From the indexes, we can calculate the tindex using the index.
(3) Sampling data: Based on the calculated tindex, the data are sampled at these times;
(4) Fourier transform: Perform Fourier transform on the sampled time;
(5) Select data points: From the Fourier transformed data, select the first 512 points for

each sampling time;



Sensors 2023, 23, 9190 10 of 17

(6) Divide into blocks: Divide the selected 512 data points into 4 blocks, each with a
length of 1278;

(7) Reverse concatenation: concatenate these 4 blocks in reverse order.

3.3. TSTN Training

This section mainly introduced the proposed diagnosis framework. First, the problem
description is illustrated. The proposed machine monitoring methodology is based on
historical data, fitting the normalized RUL label yi (1-0) via the input features xi. Then, the
transfer task is utilized to extract the domain invariant part for cross-operation condition
monitoring. The prognostics process consists of two steps: first, constructing the TSTN
network based on the input spectrum feature combined with the health indicator; second,
using the Monte Carlo method to predict RUL via the TSTN output HI. In this section, a
TSTN is developed to predict the machine HI. Details of the proposed TSTN network are
presented and shown in Figure 6. The domain discriminator of the developed TSTN was
utilized only in the TL training process.
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In actual applications, the output of the HI estimator is the machine-condition monitor-
ing HI of the proposed framework. This study utilized the Monte Carlo method based on a
linear model with exponential smoothing with parameter 0.9 to generate the downstream
prognostics result.

4. Experiment Details
4.1. Training and Testing Regimes

Training regime. Stochastic gradient descent (SGD) with 0.9 momenta is the optimizer
in this work. For practical training, the learning rate throughout the training varied
according to the following equation:

µ = min
(

S−0.5, S×WS
−1.5

)/(
1 + 10Tp

)0.75, (8)
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where S is the number of current training steps, and WS = 1000. Tp is a training process that
linearly changes from 0 to 1. The batch size is set to 32, the network weights are updated
with gradient accumulation during training, and the random seed is 66.

Testing regime. Once the network finishes training, the testing data are fed into the
grid for testing. Apart from performing data pre-processing, other operations are not
required for testing. The HI estimator output was the bearing health condition of the input
data. The HI-estimated output of the proposed method is eHI,t.

4.2. Prognostics Result

The validation dataset was obtained from the PRONOSTIA [33] experimentation
platform to test and validate bearing fault detection, diagnostic, and prognostic approaches.
The rig bench is presented in Figure 7. When the test rig was initialized, a file that contained
a 0.1 s vibration signal with a sampling frequency of 25.6 kHz was generated and recorded
every 10 s. Three operating conditions were considered; each had two training sets and
several testing sets. Information on the training and testing sets is presented in Table 2. The
dataset provides 6 sets of data that ran to failure for the establishment of the prediction
model, which are 1-1, 1-2, 2-1, 2-2, 3-1, and 3-2. In addition, 11 datasets are provided for
RUL, which are 1-3, 1-4, 1-5, 1-6, 1-7, 2-3, 2-4, 2-5, 2-6, 2-7, and 3-3.
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Table 2. Information on the FEMTO-ST dataset.

Operating Condition 1 2 3

Speed (rpm) 1800 1650 1500
Loading (N) 4000 4200 5000

Training dataset 1-1, 1-2 2-1, 2-2 3-1, 3-2
Testing dataset 1-3, 1-4, 1-5, 1-6, 1-7 2-3, 2-4, 2-5, 2-6, 2-7 3-3

The scoring benchmark was set according to [30], and only the vertical vibration
signal (2560 points per file) was used to generate the network output. The size of the
spectrum generated via fast Fourier transform was 512. The pre-processing operation en-
tailed 21 spectrum frames, and each structure was decomposed into eight non-overlapping
patches. The training epoch was set to 60. To achieve cross-domain condition monitoring
in the bearing, we use six training datasets in the same training process.

After finishing the training process of the proposed network, the network can be
utilized to monitor the health condition of the bearing in the testing data. The proposed
method’s expected output eHI,t is a direct HI of 0 to 1. To demonstrate the capability of the
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direct HI in RUL prediction, we use the Monte Carlo method based on the linear model for
curve fitting and RUL prediction (preRUL,t).

Figure 8 shows the estimated HI results and RUL predictions from the test data of the
proposed method. The blue line represents the HI output of the proposed method. The
green line refers to the RUL prediction and 95% confidence interval, and the yellow area
represents the probability distribution function of the RUL prediction result preRUL,t. As
shown in Figure 8, HI estimation using the proposed method can effectively capture the
bearing degradation trend. The proposed method can provide nearly linear HI estimation.
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5. Comparisons and Analysis

Then, the normalized prediction error Eri and benchmark scores were calculated [33].
The results of all the testing sets are listed in Table 3. The specific calculation formula is as
follows:

%Eri = 100× ActRULi − R̂ULi
ActRULi

(9)

Ai =

{
exp− ln(0.5)·(Eri/5) i f Eri ≤ 0
exp+ ln(0.5)·(Eri/20) i f Eri > 0

(10)

Score =
1

11

11

∑
i=1

(Ai) (11)

As presented in Table 3, except for testing sets 2-7 and 3-3, the RUL prediction results
of the proposed method are reasonable. The errors in the prediction results of datasets 1-5
to 2-6 were shallow, and the proposed method could effectively perform bearing condition
monitoring with testing sets 1-5, 1-7, 2-4, and 2-6. Compared to the RNN-based RUL
prediction method [34], convolutional LSTM network [35], Bi-directional LSTM network
with attention mechanism [36], and the traditional RUL prediction method based on
vibration frequency anomaly detection and survival time ratio [37], the proposed TSTN
method has higher RUL prediction accuracy. These results confirm that the proposed
method is applicable to the prognostics of mechanical rotating components. For the last two
datasets, the RUL predictions exhibit large deviations. The reason for these large deviations
is that the vibration signal changes slightly only in the early degradation process, which
displays a linear degradation trend. However, as time goes on, the linear trend becomes
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nonlinear. The HI eHI,t does not have a linear change rate in the latter stage. Hence, the
proposed HI is unsuitable for predicting the RUL in latter-stage degradation. However,
compared with other methods, the computational complexity is higher, and the training
time is 3 h.

Table 3. RUL Prediction results of the proposed method.

Dataset Eri% (Our) Eri% [34] Eri% [37] Eri% [36] Eri% [35]

1-3 0.5 43 37 −5 55
1-4 23 67 80 −9 39
1-5 25 −22 9 22 −99
1-6 9 21 −5 18 −121
1-7 −2 17 −2 43 71
2-3 82 37 64 45 76
2-4 85 −19 10 33 20
2-5 2 54 −440 50 8
2-6 70 −13 49 26 18
2-7 −1122 −55 −317 −41 2
3-3 −1633 3 90 20 3

Score 0.4017 0.2631 0.3066 0.3198 0.3828

Discussions of the Proposed Methodology

Influence of multi-head number. To improve the learning capability of the self-
attention layer of the encoder, linearly project keys, values, and query h times, which is
called the multi-head attention operation. In this section, the influence of multi-head
numbers is discussed. The predicted RUL benchmark scores of different multi-head
numbers indicate that 16 (score is 0.4017) is the most suitable for the prognostics task,
and it is higher than the results of four multi-head (score is 0.0607) and eight multi-head
(score is 0.1124) numbers. Theoretically, the larger the multi-head number, the stronger
the fitting capability. However, the rotary position embedding method requires almost
four numbers to indicate location information. When the multi-head operation breaks
up the rotary position embedding, the self-attention calculation cannot capture the time
information. Therefore, the score of the 32 multi-head numbers was 0.2631, and that of the
64 multi-head numbers was 0.0689. In summary, the multi-head number needs to be set to
dmodel/4 in the prognostics task.

Discussions with/without transfer learning. The proposed method uses the domain
discriminator with the gradient reversal layer to extract the domain-invariant RUL repre-
sentation. We expect to use the TL method to improve the linearity of the estimated HI
under different operating conditions. An experiment was conducted on a TSTN without a
TL, reflecting the domain discriminator’s effectiveness in cross-operating condition mon-
itoring. Aside from removing the domain discriminator, the other network framework
settings were similar to those in Figure 9. The RUL prediction score decreased from 0.4017
to 0.0515. The prognostic results of TSTN and TSTN without a domain discriminator for
test datasets 1-6, 1-7, 2-4, and 2-6 indicate TL’s effectiveness. Figure 9 shows the comparison
of TSTN and TSTN without transfer learning. The blue lines represent the classical TSTN
HI results, and the greenish-blue lines denote the HI-estimated effects of TSTN without TL.
TL improves the TSTN prognostics capability in cross-operating condition situations.
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Effectiveness of the self-attention mechanism. This study utilized test sets 1-6 to
generate a self-attention heatmap (shown in Figure 10) to indicate the effectiveness of the
self-attention mechanism. The longitudinal of the self-attention heatmap refers to the m
time frames, and the transverse of the self-attention heatmap pertains to the 16 multi-heads
with eight patches. In this study, 1/3, 2/3, and 1 of the normalized operating time were
selected. When a patch has a high self-attention value, the network focuses on that patch.
Figure 10 shows that only a few heads undertake the HI estimation task, but our previous
study indicated that a sizeable multi-head number equates to strong learning capability. A
possible reason is that a large multi-head results in a flexible feature association capability,
which means that features can be selected precisely.
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(a) Long-term self-attention heatmap; (b) Local self-attention heatmap; (c) Short-term self-attention
heatmap.

The first self-attention layer was a long-term self-attention layer. In Figure 10, head
12 of long-term self-attention captures the severe degradation at the end of the operating
time, and head 4 focuses on the weak degradation at the early and middle operating stages.
After the long-term self-attention layer, the spectrum long-term change relationship was
obtained, and the local self-attention layer was used to capture abundant information in
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one frame. In Figure 10, a clear degradation relationship was captured. Head 11 of the
local self-attention layer captured the weak degradation in the early operating stage. Head
10 focuses on degradation in the middle operating phase, and head 13 focuses on rapid
degradation at the late operational stage. Figure 10 shows that local self-attention plays
a greater role than the long-term self-attention layer. However, the learning capability
sharply declined when the two layers’ order was changed. This result indicates that the
long-term self-attention layer generates the long-term relationship and is strengthened by
the local self-attention layer.

In summary, the multi-heads in the short-term self-attention layer focus on the spec-
trum value, thereby making the proposed TSTN sensitive to spectrum value changes.

6. Conclusions

Machine prognostics play a crucial role in the automaticity and intelligence of indus-
trial plants, especially in intelligent plant manufacturing and asset health management.
This study proposed a TSTN-based machine prognostic method to solve the HI automatic
construction with a high-dimensional feature input in a cross-operating condition. The
proposed method is integrated with a novel transformer network structure with a domain
adversarial TL consisting of an encoder, an HI estimator, and a domain discriminator. First,
the proposed TSTN automatically extracts features (HI) from a long-term high-dimensional
feature input, avoiding information loss caused by manual feature extraction. Second, we
have devised a self-attention mechanism that encompasses long-term, short-term, and
local perspectives, enabling it to discern the dynamic interplay between long-term and
short-term machine health conditions. Third, when incorporating the DAN TL method, it
addresses issues of cross-operating conditions and different data distributions. The domain
discriminator with a gradient reversal layer can generate an accurate and robust HI. Com-
pared to the RUL prediction methods based on RNN, the convolutional LSTM network,
the bi-directional LSTM network with an attention mechanism, and traditional strategies
rooted in vibration frequency anomaly detection and survival time ratios, our proposed
TSTN approach achieves a superior score of 0.417, indicating its enhanced accuracy in
RUL prediction. In the future, we plan to collect more datasets to verify the effectiveness
of the proposed method. In addition, we will conduct further research on improving the
generalization ability of the method for dealing with extremely cross-operating conditions,
such as predicting the RUL for an unseen operating condition. The proposed method is a
promising methodology for coping with HI estimator construction with a high-dimensional
feature input, monitoring machine health conditions, and predicting machines’ RUL in
cross-operating working conditions.
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