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Abstract— The continuous operation of the equipment
degrades the performance of the critical parts, which can cause
the equipment to fail and stop at a particular and unexpected
moment. Timely diagnosis of the equipment is vital for condition
monitoring and maintenance. Due to the small amount of data
and data collection limitation, it is difficult to train an efficient
diagnosis model for real-time tracking within only one piece of
equipment data. This study proposes an improved data privacy
diagnostic framework for multiple same types of machinery
components, solving the insufficient data, data protection, and
multiple machines’ fault information exchange. First, the swarm
learning (SL) framework integrates various data sources to
enrich the data contained within a solo diagnosis network.
Second, the different training nodes utilize various local diagnosis
models to improve data protection efficiency further and realize
the interaction of data information. Third, we developed three
different local diagnosis models, which can mutually exchange the
partially faulty information with each other to make up for the
inefficiency of model diagnosis caused by single insufficient data.
The experimental demonstration is conducted on the bearing
fault datasets, proving that the proposed method can be more
flexible and reliable in more industrial scenarios.

Index Terms— Data privacy protection, different local diagno-
sis model, global fault diagnosis, multiple machinery components,
swarm learning (SL).

I. INTRODUCTION

FAULT diagnosis technology is of great significance in
modern industrial systems. Timely detection of faults in

the system can improve the safety and reliability of complex
systems. By identifying the causes of faults, appropriate mea-
sures can be taken to rectify the system failures [1], [2]. One
effective approach involves the placement of sensors along
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the horizontal and loading directions of the force-bearing
components of rotating equipment. This arrangement allows
for real-time monitoring of equipment operation and enables
subsequent prediction work. The abundance of data has
fueled the rapid development of data-driven fault diagnosis
methods [3], [4], [5].

With the introduction of deep learning, fault diagnosis
has been further developed due to its short training time
and fast convergence advantages. Some typical neural net-
works have been widely used, e.g., convolutional neural
networks (CNNs) [6] and deep belief networks (DBNs) [7].
Peng et al. [8] proposed a Bootstrap Your Own Latent
(BYOL) network based on contrastive learning algorithm
automatic fault feature extractor (AFFE), which can automat-
ically extract fault features without label information. At the
same time, this study introduces data enhancement, which
can help AFFE extract features from unlabeled bearing fault
data. Wang et al. [9] proposed a fully interpretable network
to realize machine state monitoring, which introduces inter-
pretable statistics: warpage, negative entropy, Gini index, and
smoothing factor to replace the extreme learning machine
(ELM) neurons, and not only improves the interpretabil-
ity of the network making it industrially usable but also
reduces the parameters to improve the speed of network train-
ing. Michau et al. [10] proposed a fully unsupervised deep
learning framework capable of extracting meaningful sparse
representations of raw high-frequency signals. In this work, the
denoising fast discrete wavelet transform is embedded in the
system without any form of preprocessing and postprocessing.
Zhang et al. [11] proposed a new interpretable fault diagnosis
method, which extracts the features of the data through CNN,
then uses principal component analysis (PCA) to reduce the
dimensionality of the data, selects the first two principal
components after dimensionality reduction as the fault feature
vectors, and finally uses fuzzy mean clustering to realize the
classification of fault feature vectors. These fault diagnosis
methods based on deep learning rely on huge training data,
but in the actual industry, there may be problems with a small
amount of data and unknown parts of data labels. At the same
time, the practical application of deep learning is limited due
to the uninterpretable nature of the trained model.

However, in actual industrial settings, labeled condition
monitoring data are often collected, and developing a high-
precision data-driven fault diagnosis model for a single factory
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can be economically and time-consuming [12], [13], [14];
federated learning (FL) technology has gained widespread
adoption and can be used to address this challenge. It allows
for resolving “data islands” where data are not interoperable.
Furthermore, each enterprise places a high value on virtual
property, making sharing data among various production plants
challenging. FL provides a solution by allowing data to be
trained locally while only sharing the gradient or the trained
model.

In addition to addressing issues such as insufficient data
and data privacy protection, the introduction of FL can also
tackle challenges such as data class imbalance, noninde-
pendent and nonidentically distributed data from different
sources, and model aggregation methods in industrial applica-
tions [15]. For example, Lu et al. [16] proposed a distributed
wind turbine fault diagnosis FL framework class-imbalanced
privacy-preserving FL (CI-PPFL) in response to industrial big
data privacy protection and wind turbine data. At the same
time, different servers have different amounts of data, and a
noise gradient mechanism is added to prevent client gradient
tracking. Zhang et al. [17] proposed a new dynamic verifica-
tion scheme under the framework of FL to reduce the impact of
distributed low-quality training data. During training, a verifi-
cation set is added to evaluate the model, the cross-entropy loss
measure is calculated, and the local model score is obtained.
The model with the highest score is automatically ignored.
Liu et al. [18] proposed an asynchronous FL algorithm to
solve the data island problem of photovoltaic power plants.
Compared with a single photovoltaic power station, multiple
photovoltaic power stations can provide enough fault sam-
ples, and asynchrony can solve the problem of the different
computing power of each photovoltaic power station server.
Zhang et al. [19] designed an adaptive method to adjust the
model aggregation interval according to the user’s feedback to
reduce the communication cost while ensuring the accuracy of
the model. The methods proposed above are all applications
of FL in fault diagnosis of mechanical equipment, which solve
the problem of insufficient data and feature distribution in
different fields. Nevertheless, FL has the problem of high
communication costs.

The fault diagnosis network based on FL requires a tradi-
tional central cluster server to collect and distribute informa-
tion [20]. In contrast, swarm learning (SL) does not require
such a central server. It can designate any node within a local
area network as a temporary virtual central server to handle
command issuance and collection. SL can significantly reduce
communication time and computational costs. Sun et al. [21]
researched an SL computational framework based on data
privacy protection. In this framework, each local network node
has the same fault diagnosis model, which does not align
with the different data distributions in each device or factory
in reality. Therefore, we improved the framework to enable
each node to independently perform local fault diagnosis
tailored to its unique data structure distribution. We then
designed weight parameter average algorithms to facilitate the
transfer of features between different local diagnostic mod-
els, enabling feature sharing while keeping the data retained
locally.

Both FL and SL have their own advantages, such as
data privacy protection, leveraging the capabilities of edge
computing devices, only transmitting model parameters, and
real-time model updates. However, due to the “one-to-many”
and “many-to-one” architecture characteristics of FL, it is sus-
ceptible to attacks. Moreover, FL’s reliance on a central server
can lead to issues of power concentration and also increase
the cost of gradient transmission. In contrast, SL employs a
point-to-point connection approach, making the architecture
more stable. Each node has the potential to become a central
server, which can reduce data communication costs to some
extent. In the domain of fault diagnosis, FL offers a promising
solution with its emphasis on data privacy and secure model
aggregation. In fault diagnosis applications, where equipment
condition data might be sensitive, FL enables various stake-
holders to collaboratively train a fault detection model without
sharing raw data. This ensures the confidentiality of sensitive
information while benefiting from a diverse range of data
sources. The decentralized approach also allows localized
training on distributed devices, which is especially valuable for
real-time monitoring of equipment health. However, the com-
munication overhead between the central server and devices,
as well as the potential challenges stemming from device
heterogeneity, should be considered while implementing FL
for fault diagnosis tasks. SL, on the other hand, introduces a
novel dimension to fault diagnosis by leveraging collaborative
knowledge exchange among nodes. In the context of fault
diagnosis, where multiple equipment might exhibit diverse
failure modes, SL allows nodes to share insights and par-
tial fault information. This leads to a collective intelligence
that enhances the fault diagnosis accuracy by pooling the
collective expertise of different devices. SL’s adaptability to
varying fault patterns and its fault tolerance capabilities make
it a compelling solution for scenarios where fault diagnosis
accuracy relies on the collective insights of multiple sources.
Nonetheless, the complexity of swarm communication and
potential resource consumption must be carefully managed to
harness its full potential in fault diagnosis applications. Fig. 1
shows the comparison of FL and SL network structure.

To address the data silos and privacy protection, we employ
SL as a framework for aggregating data information. In addi-
tion, each node utilizes a distinct model to enhance data
privacy and improve the usability of the vibration strength
model framework. The research focuses on vibration signals,
such as bearings. The main innovations and creativities of this
study are given as follows.

1) Proposing the concept of global diagnosis, where dif-
ferent diagnosis models can be selected randomly for
various fault signals. This approach enables the opti-
mization of diagnosis accuracy within a single network.

2) Designing a swarming learning structure with three
local nodes as the core network for integrating data
information and a virtual center to address data privacy
protection concerns.

3) Developing different local diagnosis models for each
node, comprising AlexNet, AlexNet with wavelet trans-
formation, and AlexNet with Chebyshev filter. These
models contribute to the overall fault diagnosis process.
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Fig. 1. Conceptual diagram of the structures of two methods. (a) FL: data
are stored in individual member nodes, with a central server responsible for
integrating information from each node and distributing the model. (b) SL:
this method does not rely on a central server.

Three main contributions can be summarized in this study:
data privacy protection, data insufficiency supplementation,
and fault information exchange.

A. Data Privacy Protection

The study addresses the issue of data privacy protection by
utilizing SL, which allows data to be locally retained while
enabling the sharing of relevant information among nodes.
This approach enhances the privacy and security of sensitive
data.

B. Data Insufficiency Supplementation

The research tackles the problem of insufficient data by
employing an SL framework. Each node utilizes a dif-
ferent model, allowing for the integration of diverse data
sources and enhancing fault diagnosis’s overall accuracy and
reliability.

Fig. 2. AlexNet structure diagram.

C. Fault Information Exchange

The study focuses on facilitating the exchange of
fault-related information among nodes. By employing SL, the
framework enables sharing features between local diagnostic
models. This promotes effective collaboration and improves
fault diagnosis algorithms, enhancing diagnostic efficiency.

The remainder of this article is organized as follows.
Section II briefly introduces related work such as AlexNet and
SL. Section III describes the proposed method’s detailed pro-
cess, including each node’s local training model structure and
the process of SL aggregation model parameters. Section IV
uses different experimental vibration signals for verification.
Section V draws the conclusions.

II. RELATED WORK

A. AlexNet

AlexNet [22] is a kind of CNN born in 2012. Compared
with the simplest LeNet5, it has a more complex structure and
more parameters for training. The overall network structure of
AlexNet includes one input layer, five convolutional layers,
two fully connected layers, and one output layer. The network
structure of AlexNet is shown in Fig. 2.

Since the signal based on the rolling bearing is a 1-D signal,
1-D AlexNet is used to extract features from the vibration data.
The calculation formula of the convolutional layer is given as
follows:

X l
j = f

∑
i∈M j

X l−1
i ∗ K l

i j + bl
j

. (1)

Among them, M j is the selected input feature, X l−1
i is the j th

input of layer l, ∗ is the convolution operation, K l
i j and bl

j
are the weight and bias, respectively, and f is the activation
function in the convolution operation. After the convolutional
layer, the features can be obtained, so the pooling layer is
used for downsampling to reduce model parameters and retain
the main features. The calculation formula of the pooling
operation is

yl
j = f

(
βl+1down

(
X l

j

)
+ bl+1). (2)

Among them, down(·) is the downsampling operation and the
pooling type. If it is 2 × 2, then its value is 0.25.

In the AlexNet structure, since there is no division operation
in ReLU, it is widely used. At the end of the network oper-
ation, SoftMax is used to achieve the classification to predict
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Fig. 3. Laplace wavelet waveform.

the probability of different categories, and cross entropy is
used as the loss function of model training.

The choice of AlexNet as the local diagnostic model in this
study is due to its excellent performance in image classification
and deep learning capabilities, as well as its computational effi-
ciency. Furthermore, its compatibility with the SL framework
enables efficient information sharing and collaboration among
nodes. These features contribute to enhancing the efficiency
and accuracy of equipment condition monitoring.

B. Wavelet Network

Wavelet has attenuation and volatility. Compared with
the Fourier transform, the wavelet transform is a localized
time and frequency analysis. It gradually refines the signal
(function) on multiple scales through scaling and translation
operations and finally achieves time fineness at high frequen-
cies. Subdivision, frequency subdivision at low frequency can
automatically adapt to the requirements of time–frequency
signal analysis. Wavelets can be expressed as

W T (a, τ ) =
1

√
a

∫
∞

−∞

x(t)ψ∗

(
t − τ

a

)
dt. (3)

It can be seen from the formula that the Fourier transform
of different domains of wavelet has only one variable of
frequency, and the wavelet has two variables: scale factor a
and translation factor τ . ψ∗(·) is the complex conjugate of the
generating function. By transforming (3), we can get

W T (a, τ ) =
1

√
a

F−1{X( f )ψ∗(a f )
}
. (4)

From (4), it can be concluded that the wavelet transform
of the signal can be regarded as the signal passing through a
bandpass filter.

Li et al. [23] used the wavelet as the first layer of CNN to
conduct comparative experiments and found that the Laplace
wavelet can better extract the impact part due to its decreasing
spiral characteristics. It can be expressed as

ψ(ω, ζ, τ, t) = ψγ (t)

=

{
Ae

−
ζ

√
1−ζ2

ω(t−τ)
e− jω(t−τ), t ∈ [τ, τ + W ]

0, other.
(5)

Among them, γ = ⟨ω, ζ, τ ⟩ represents the parameters of
the Laplace wavelet and ω represents the frequency, which
determines the oscillation frequency of the Laplace wavelet;
the damping ratio ζ makes the Laplace wavelet attenuate

Fig. 4. Generated Laplace wavelet waveform.

rapidly, τ is the time parameter, A is used to normalize
the wavelet function, and W represents the wavelet compact
support interval width. The diagram of Laplace wavelet is
shown in Fig. 3.

Subsequently, the Laplace wavelet is used as the first layer
of AlexNet. Since the first layer of AlexNet involved in
this study originally had 64 convolution kernels, 64 Laplace
wavelets need to be generated to replace the previous 64 con-
volution kernels. The generated multiple Laplace wavelet
waveforms are shown in Fig. 4.

C. Filter Network

The Chebyshev filter is a filter whose frequency response
amplitude is equiripple in the passband or stopband, and
the amplitude characteristic is equiripple in the passband.
Chebyshev type I filters are characterized by equal ripples in
the passband, monotonic in the stopband, and a faster drop
in the stopband. The relationship between the magnitude and
frequency of the n-order Chebyshev type I filter is given as
follows:

Gn(ω) = |Hn( jω)| =
1√

1 + ε2T 2
n

(
ω
ω0

) . (6)

Among them, ε < 1, which is related to the ripple of the
passband, the larger the value, the bigger the ripple. n is the
order of the filter, and Tn(ω/ω0) is the Chebyshev polynomial.

As mentioned above, the filter must replace the convolution
kernel of the first layer of AlexNet, so 64 Chebyshev filters
must be generated.

D. Swarm Learning

Fig. 1(b) shows a schematic of the diagnostic structure based
on the SL network. The SL network authorizes each participant
(local client) to share and update the model, which means that
each participant has the same capabilities as the FL central
server. Therefore, each participant can integrate information
from multiple other edge computing node participants. Each
participant should complete two steps during the training
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Fig. 5. Comparison of (a) SL framework and (b) DSL framework.

process to ensure the model’s accuracy. First, each node first
trains the model locally. After each epoch, one of the nodes is
randomly selected as the node for integrating the model. After
the model is integrated, the model is distributed to other nodes
until the end of the epoch is reached. Model integration adopts
the method of averaging model parameters, and the calculation
formula is given as follows:

m j+1 =
1
n

n∑
i=1

m j,i . (7)

In the formula, m j+1 is the integrated model parameter, i is
the number of nodes, and m j,i is the model parameter obtained
by the node after the j th round of training.

III. PROCEDURE OF THE PROPOSED METHOD

Sun et al. [21] proposed the use of SL as a framework
for fault diagnosis. This framework utilizes the same CNN to
train the local model. However, we propose using different
algorithms to train the local diagnosis model in this study.
This concept aims to make the specific signal choose the
specific diagnosis model and also make them exchange their
fault information rather than the original dataset. It can be
used in three practical industrial scenarios: data insufficient,
fault information exchange, and privacy protection. After each
training epoch, the model parameters are summed, averaged,
and distributed to each node. Domain adaptation neural net-
work (DANN) is also introduced to reduce the distribution
difference of data between various domains [21]. The compar-
ison between the SL and the different model swarm learning
models is shown in Fig. 5.

The proposed method can automatically learn fault features
from fault data and identify machine working status from
raw vibration signals. The overall process of the proposed
mechanical fault diagnosis process is shown in Fig. 6. See
Algorithm 1 for the training algorithm.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

This section uses the different bearing datasets to verify our
assumption and global diagnosis framework. We design four
experiments to evaluate the performance and effectiveness of
our proposed different swarm learning (DSL) framework.

Algorithm 1 Fault Diagnosis of Different Models
I.Data preprocessing
II.Model preparation

1) Select AlexNet as the skeleton of the model and the model
of one of the nodes

2) Replace the first layer of AlexNet with Laplace wavelet
and Chebyshev filter, respectively as the model of the other
two nodes
III. Build a DSL framework
IV. Model training

1) For any node, i = 1,2,3;
Choose one of the three nodes as the model decision-maker

m j,kth =
(
ωkth

∣∣bkth

)
;

2) Model parameter update and distribution
V. Model validation

TABLE I
WORKING CONDITIONS OF THREE BEARING FAULT DATASETS

A. Dataset Preparation

The research object in the experiment is three nodes, and
the datasets of the three nodes come from different sources,
namely, Kate Western Reserve University dataset (CWRU),
Soochow University dataset (SCU), and laboratory self-made
dataset (HITsz). The details of the bearing fault test bench are
shown in Fig. 7.

1) Dataset A (SCU): The dataset of the fourth node comes
from the Soochow University dataset.

2) Dataset B (HITsz): The dataset for the second node is
obtained from our own laboratory collection.

3) Dataset C (CRWU) [24]: The dataset of the first node is
the public dataset of Case Western Reserve University.

There are four types of bearing status: normal, inner ring
fault, outer ring fault, and rolling element fault. Since the
research problem is a small sample, the dataset of each node
has 404 sets of data, and the length of each set of data is 1200.
For each node, 200 are used for training and 204 are used for
testing. For each type of fault, 50 sets of data are used to train
the diagnostic model, while 51 sets of data are used to test
the model. The working conditions of each dataset are listed
in Table I.

B. Hyperparameter Settings

The fault diagnosis of different models based on the DSL
framework is implemented using the Python-based Pytorch
framework. The epoch is set to 100, as referred to in [21].
Through experimental fine-tuning, it has been observed that
when the epoch is greater than 100, the loss function remains
essentially unchanged. The learning rate is set to 0.0003,
which is adapted and fine-tuned from the learning rate of SL
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Fig. 6. Flowchart of fault diagnosis based on the proposed method.

TABLE II
HYPERPARAMETER SETTINGS

in [21]. The sizes of the training set (Ntrain) and the test set
(Ntest) follow the conventions laid out in [8].

The hyperparameter settings for the experiments are listed
in Table II.

C. Experiment Settings

The abovementioned experimental parameter setting experi-
ment was run five times in total, and the algorithm took 64 s to
run each time. The experimental results are shown in Table III.

It is not difficult to find from Table IV that good accuracy
can be obtained in repeated experiments, which shows the
feasibility of the experiment. At the same time, the running
time is short, and faults can be found in time in actual
industrial applications.

D. Computational Cost Comparison

In this section, we discussed three primary learning meth-
ods: FL, SL, and swarm learning with different models. For

Fig. 7. Bearing fault test rig: (a) SCU, (b) CWRU, and (c) HITsz.

each method, we evaluate it from two main perspectives: the
number of model parameters and data transfer times.
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TABLE III
EXPERIMENTAL RESULTS OF RUNNING FIVE TIMES

TABLE IV
COMPARISON OF COMPUTATIONAL COST

From Table IV, we can observe that the DSL has fewer
parameters compared to FL and SL, and for the data transfer
times, it has four times for each epoch, while the FL has six
times for each epoch. The reason is that SL and DSL do not
need a central server, while FL needs a central server, which
needs two more times of data transfer: uploading and down-
loading data. These uploading and downloading require more
data transfer time. This computation cost can be significant
when the dataset becomes a large-scale one.

E. Comparative Experiment

To further study the feasibility of the proposed DSL, this
section sets up multiple experiments and different situations
to verify.

1) Experiment I (Compared With SL): This experiment
studies the influence of different models on the experimental
results. In [21], some identical CNN models are used, so this
experiment is set up for comparison. During the experiment,
except that the wavelet CNN and filter CNN in DSL were
replaced by AlexNet, other experimental parameters and net-
work structure remained unchanged. The experimental results
are shown in Fig. 8.

The experimental results show that both DSL and SL
methods have achieved good results, but DSL has higher
accuracy in comparison. This indicates that the difference of
the model not only does not hinder the communication of
the model, but the accuracy is also further improved. At the
same time, the introduction of wavelet and filter enables the
network to extract the impact characteristics of the fault better
than the ordinary 1-D CNN and gives the network a certain
interpretability.

2) Experiment II (Comparison With Local Learning):
This experiment is to compare DSL with local learning. The
experiment is divided into two parts. One part is the method of
DSL proposed in this article. One part is local training, that

Fig. 8. Comparison of experimental results of SL and DSL.

TABLE V
COMPARISON BETWEEN DSL AND LOCAL LEARNING

is, there is no model interaction process between the three
nodes, and both training and testing are performed locally.
The experimental results are shown in Table V.

Table V shows the experimental results of DSL and local
learning. If network parameters are not integrated and only
local training is conducted, excellent results can be obtained
due to the same data sources. However, in comparison, the
results under the DSL framework are very close to local
learning, and the accuracy is slightly higher on node 2.

3) Experiment III (Dataset Size on Experimental Results):
This experiment studies the influence of the size of the
training set on fault diagnosis under the DSL framework. This
experiment selects the vibration signal as the time-domain
signal. Since the batch size is 16, the size of the dataset is
set to 16, 40, 80, 100, 120, 160, and 200. The experimental
results are shown in Fig. 9.

From the experimental results, it can be concluded that the
experiment’s accuracy increases with the training set’s size.
When the dataset is small, that is, when there are only four
data of each type for each node, the experimental accuracy is
poor. However, as the number increases to 10, the accuracy
rapidly increases, indicating that the proposed DSL framework
can run on a smaller training set size but is also relatively weak
when the data are extremely scarce.

4) Experiment IV (Data Category Imbalance): In the above
experiment, the dataset of each node is the same, and the data
for each type of fault are the same. This experiment aims to
explore the impact of missing class data on the experimental
results. The experimental setup is given as follows: Node 1 is
missing outer circle fault data, Node 2 is the missing rolling
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Fig. 9. Accuracy of different training set sizes under DSL.

Fig. 10. Experimental results with missing training data. Different colors
represent different nodes, and each node lacks different data types.

element fault data, Node 3 is the missing inner circle fault
data, and each node has normal data. In the above experiment,
the fault data for each type of node are 50, which is now
adjusted to 40, 30, 20, 10, 5, 1, and 0. The experimental
results are shown in Fig. 10. In this experiment, the data of
each node are unbalanced. The experimental results indicate
that in the DSL framework, data loss significantly impacts the
experimental results. When less data are missing, the accuracy
of Nodes 1 and 2 slightly decreases, while the accuracy of
Node 3 substantially decreases. When the data are highly
missing, the accuracy of each node is not high.

V. CONCLUSION

This article presents a fault diagnosis algorithm for differ-
ent models based on the DSL framework. This diagnostic
framework can protect data privacy, has a shorter training
time, and contains various local diagnostic models, making the
proper signal match the suitable diagnosis models. This study

proposes an improved data privacy diagnostic framework
based on an SL algorithm to realize fast and accurate diagno-
sis, especially for multiple machines. First, the SL framework
integrates various data sources to enrich the data contained
within a solo diagnosis network. Second, the different training
nodes utilize various local diagnosis models to improve data
protection efficiency further and realize the interaction of data
information. Third, we develop three different local diagnosis
models, which can mutually exchange the partially faulty
information with each other to make up for the inefficiency
of model diagnosis caused by single insufficient data. The
feasibility of the proposed method is verified by setting up
a series of comparative experiments based on different bear-
ing fault signals. Therefore, this proposed conceptual global
diagnosis model can be applied to broader industrial appli-
cation scenarios requiring data privacy protection and fault
diagnosis.
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